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PMS 2018 Preface

Preface

This volume contains the papers that will be presented at PMS 2018, the 16th International
Conference on Project Management and Scheduling to be held on April, 17-20 2018 in Rome
- Italy.

The EURO Working Group on Project Management and Scheduling was established by Pro-
fessors Lúıs Valadares Tavares and Jan Weglarz during the EURO VIII Conference, Lisbon, in
September 1986. It was decided to organize a workshop every two years. Gathering the most
promising theoretical and applied advances in Project Management and Scheduling, and assess-
ing both the state-of-the-art of this field and its potential to support management systems are
the main objectives of these workshops.

76 extended abstracts have been submitted to the PMS 2018 Confenrece. These valuable con-
tributions were reviewed by 2 referees who are members of the International Program Committee
and distinguished researchers of the associated fields. The proceedings at hand contain the 65
papers that were finally accepted for presentation at the conference. There papers involves 165
authors from 23 different countries.

The 16th edition of PMS has four plenary speakers: Professor Jacques Carlier (Univer-
sité de Technologie de Compiègne) will present the talk “Comparing event-node graphs with
nonrenewable resources and activity-node graphs with renewable resources”, Professor Erwin
Pesch (University of Siegen) will discuss on “Optimization problems in intermodal transport”,
Professor Ruben Ruiz (University of Valencia) and Professor Erik Demeulemeester (Katholic
University of Leuven) will delight us talking on “Simple metaheuristics for flowshop scheduling:
all you need is local search” and “On the construction of optimal policies for the RCPSP with
stochastic activity durations”, respectively.

The scientific program and the social events will give to all the participants an opportunity
to share research ideas and debate on recent advances on project managment and scheduling. I
am sure that together we will contribute to make PMS 2018 a great success.

Welcome in Rome and have an enjoyable stay!

Rome, 17th April 2018 Massimiliano Caramia (Conference Chair)
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Eliana Maŕıa Gonzalez-Neira and Jairo R. Montoya-Torres

An Algorithm for Schedule Delay Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Pier Luigi Guida and Giovanni Sacco

Minimizing the total weighted completion time in single machine scheduling with
non-renewable resource constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Peter Gyorgyi and Tamas Kis

The Cyclic Job Shop Problem with uncertain processing times. . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Idir Hamaz, Laurent Houssin and Sonia Cafieri

Modeling techniques for the eS-graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
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1 Problem formulation and complexity

In this paper, a scheduling and energy source assignment problem is studied. The
problem is abstracted from several applications including data centers (Guérout et al. 2017),
smart buildings (Desdouits et al. 2016), hybrid vehicles (Caux et al. 2017, Ngueveu et
al. 2017) and manufacturing (Haouassi et al. 2016). A set of jobs J has to be scheduled
on a set of energy consuming machines M. The energy consumed by a machine k has a
fixed part Dk depending on whether the machine is switched on or off and a variable part
depending on the tasks that are currently in process. Each task j requires an amount Djk

of energy at each time period it is processed on machine k. We are interested in optimizing
the total energy cost induced by energy production required to satisfy the total energy
demand of a given schedule over a fixed discrete horizon T = {1, . . . , |T |}. At each time
period, the energy required by the schedule can be supplied by two energy sources. One
source is reversible, such as batteries and super-capacitors. Such a source is able not only
to produce energy but also to retrieve it assuming a limited capacity Q. Such a resource is
equivalent to a continuously-divisible storage resource in the scheduling terminology. The
second source is a non-reversible source, only able to produce energy, such as the external
power grid (assuming here that energy cannot be sold to the network). This source is
assumed of infinite capacity, but its usage comes with a cost (see below). In this paper, we
consider a parallel machine environment, such that pj units of each task j must be scheduled
preemptively inside a time window [rj , dj ] and have to be assigned at each time period to
one and only one machine. Job units also require resources from a set R (e.g. CPU, RAM)
on their assigned machines. A job requires a non-negative amount cjr on each resource
r ∈ R. On each machine k, resource r is available in a limited amount Ckr. The energy
cost for a period of the scheduling horizon is a piecewise linear (PWL) function ft, t ∈ T , of
the required amount of energy on the non-reversible source. The PWL function is assumed
to be time dependent. This allows to model time dependent electricity prices as well as
previsions of photovoltaic production since the cost can be zero up to a required amount
of energy corresponding to the expected photovoltaic production on the considered time
period. We introduce variables yjkt ∈ {0, 1} indicating whether one unit of job j is assigned
to machine k at time t and zkt ∈ {0, 1} indicating whether machine k is switched on at time
t. Continuous variables are used for energy amounts: xt ≥ 0 gives the amount of energy
used on the non-reversible source at time t, st ≥ 0 is the level of energy remaining in the



non-reversible source at time t (s0 is a constant indicating the initial energy level). Based
on these variables, we define a MILP formulation of the problem aiming at minimizing the
total energy cost.

minimize
∑

t∈T ft(xt) (1)
subject to ∑

k∈M yjkt ≤ 1, j ∈ J , t ∈ T (2)∑
k∈M

∑
t∈T yjkt = pj , j ∈ J (3)∑

j∈J cjryjkt ≤ Ckr, k ∈M, r ∈ R, t ∈ T (4)
zkt − yjkt ≥ 0, k ∈M, j ∈ J , t ∈ T (5)

xt + st − st−1 −
∑

j∈J
∑

k∈MDjkyjkt −
∑

k∈MDkzkt = 0, t ∈ T (6)
s|T | − s0 ≥ 0, (7)

st −Q ≤ 0, t ∈ T (8)
st ≥ 0 t ∈ T (9)
xt ≥ 0 t ∈ T (10)

yjkt ∈ {0, 1} j ∈ J , k ∈M, t ∈ T (11)
zkt ≥ 0 k ∈M, t ∈ T (12)

The total energy cost minimization objective (1) is considered. Constraints (2) state that
a job may be in process on only one machine at a given time. Constraints (3) enforce each
unit of a job to be scheduled on one machine. Constraints (4) are the resource constraints.
Constraints (5) enforce a machine to be switched on at each time it processes at least one
job. Constraints (6) are the energy balance constraints between the schedule demand, the
energy provided by the non-reversible source (xt) and the energy taken from or provided to
the reversible source (st − st−1, that can be positive or negative). Constraint (7) enforces
the final energy level in the reversible source to be at least the initial one. Constraints
(8) are the reversible source capacity constraints (storage limit). Scheduling preemptive
jobs with PWL energy costs is NP-hard, even with an unlimited number of machines and
single non-reversible source (Ngueveu et al. 2016). Therefore the proposed MILP becomes
intractable as the problem size increases.

2 A lot-sizing and scheduling matheuristic

We propose a natural decomposition of the problem. Let dt =
∑

j∈J
∑

k∈MDjkyjkt
+
∑

k∈MDkzkt denote the total energy demand of a fixed schedule at time t. Then con-
straints (6) can be rewritten

xt + st − st−1 − dt = 0, t ∈ T (13)

Now observe that for fixed dt, problem LSP: min
∑

t∈T ft(xt) s.t. (7–10), (13) is a single-
item (continuous) lot sizing problem with PWL production costs where dt is the demand
for period t, xt is the production variable for period t, and st is the variable giving the
amount of inventory at the end of period t. In Absi et al. (2017), the problem is shown to
be NP-hard but for integer inventory levels, a pseudo-polynomial dynamic programming
(DP) algorithm of complexity O(T 2qd) where d is the average demand and q is the average
number of breakpoints of the PWL functions ft is given, generalizing the results of Shaw
and Wagelmans (1998). On the other hand, if the variables st are fixed, by performing
change of variables xt ← xt − st + st−1 for all t, we obtain

xt =
∑
j∈J

∑
k∈M

Djkyjkt +
∑
k∈M

Dkzkt, t ∈ T (14)



and problem MSP: min
∑

t∈T f ′t(xt) =
∑

t∈T ft(xt− st+ st−1) s.t. (2–5), (10–12), (14),
which is a parallel machine scheduling problem with PWL costs and a single non-reversible
source, NP-hard in the strong sense as shown in Ngueveu et al. (2016).

A matheuristic is obtained by solving alternatively MSP and LSP. Starting with initial
reversible source transferred amounts st− st−1 = 0 for all t, MSP is solved and the output
energy demand (dt)t∈T is used as input of LSP. The output inventory levels are used to
update the PWL functions f ′t . Then, MSP is solved again, and so on until no improvement
is observed in the objective function.

We first compare the MILP (solved with Cplex) and the pseudo polynomial DP algo-
rithm with fixed demands (only LSP), see table 1. The merits and the drawback of the
two approaches are illustrated on 4 instances with T = 1000, q = 10 breakpoints, and
varying average maximal capacities Q and demands d. Under a 300s time limit for the
MILP, the CPU times (in seconds) and obtained costs are compared. It appears that no
algorithm dominates the other one in terms of CPU time, while the DP is more impacted
by the maximal available capacity for the reversible source. However the MILP shows a
more erratic and unpredictable behavior. Note that due to the integrity requirement of the
inventory levels, the DP costs are higher than the MILP costs.

Table 1. Comparison of MILP and DP on the lot sizing problem (LSP)

T q Q d MILP cost MILP CPU DP cost DP CPU
1000 10 1000 100 6661 300 6916 14.16
1000 10 10000 100 4396 2.90 4508 279
1000 10 100 2000 975523 0.57 975617 1.31
1000 10 1000 2000 940165 300 937886 15

Finally we compare the MSP/LSP decomposition matheuristic (MH) with the full MILP
to solve the global problem. We also illustrate the cost and CPU time differences on 4
instances with varying horizon, number of machines, number of jobs (see table 2). On 3
instances (marked with a ∗) the full MILP reached the time limit. The matheuristic is
only slightly faster than the MILP except on the last instance, where it is much faster.
The costs can be close to the MILP ones although important gaps can also be observed.
In parenthesis, the maximal CPU time per iteration and the iteration number assigned to
MH is indicated. A closer analysis of the CPU times between MSP and LSP reveals that
90% of the CPU time is spent on solving the scheduling problem MSP.

Table 2. Comparison of full MILP and matheuristic on the global problem

T |M| |J | MILP cost MILP CPU MH cost MH CPU
30 2 50 11280 450∗ 11280 154 (150× 3)
60 4 150 25966 2000∗ 26183 1893 (1000× 2)
120 2 150 5944 2000∗ 6972 1855 (1000× 2)
120 1 150 11255 1353 11265 228 (200× 10)



3 Conclusion

We have proposed an original lot sizing and scheduling decomposition approach to
solve an energy management and scheduling problem on parallel machines. The lot sizing
subproblem can be solved considerably faster than the scheduling subproblem and conse-
quently, further research on the problem should focus on improvement of the scheduling
solution procedure. To improve the decomposition heuristic, optimality cuts issued from
lot sizing could be designed for the scheduling problem. Another interesting issue is to
consider a non ideal yield of the reversible source. In practice, due to energy conversion
and losses only a fraction of st − st−1 is available to fulfill the demand and a possibly non
linear efficiency function g(st − st − 1) has to be used to compute the obtained energy. It
remains to know whether efficient lot sizing procedure can be devised with such efficiency
functions.
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1 Introduction

Crossdocking is a warehouse management concept in which items delivered to a ware-
house by inbound trucks are immediately sorted out, reorganized based on customer de-
mands and loaded into outbound trucks for delivery to customers, without requiring ex-
cessive inventory at the warehouse (J. van Belle et al. 2012). If any item is held in storage,
it is usually for a brief period of time that is generally less than 24 hours. Advantages
of crossdocking can accrue from faster deliveries, lower inventory costs, and a reduction
of the warehouse space requirement (U.M. Apte and S. Viswanathan 2000, N. Boysen et
al. 2010). Compared to traditional warehousing, the storage as well as the length of the
stay of a product in the warehouse is limited, which requires an appropriate coordination
of inbound and outbound trucks (N. Boysen 2010, W. Yu and P.J. Egbelu 2008).

The truck scheduling problem, which decides on the succession of truck processing at the
dock doors, is especially important to ensure a rapid turnover and on-time deliveries. The
problem studied concerns the operational level: trucks are allocated to the different docks
so as to minimize the storage usage during the product transfer. The internal organization
of the warehouse (scanning, sorting, transporting) is not explicitly taken into consideration.
We also do not model the resources that may be needed to load or unload the trucks, which
implies the assumption that these resources are available in sufficient quantities to ensure
the correct execution of an arbitrary docking schedule.

In this abstract, we present a time-indexed formulation, a network formulation and some
valid inequalities. Experimental results will be presented during the talk at the conference.

2 Detailed problem statement

We examine a crossdocking warehouse where incoming trucks i ∈ I need to be unloaded
and outgoing trucks o ∈ O need to be loaded (where I is the set containing all inbound
trucks while O is the set containing all outbound trucks). The warehouse features n docks
that can be used both for loading and unloading. The processing time of truck j ∈ I ∪ O
equals pj . This processing time includes the loading or unloading but also the transporta-
tion of goods inside the crossdock and other handling operations between dock doors. It
is assumed that there is sufficient workforce to load/unload all docked trucks at the same
time. Hence, a truck assigned to a dock does not wait for the availability of a material
handler.



The products on the trucks are packed on unit-size pallets, which move collectively as
a unit: re-packing inside the terminal is to be avoided. Each pallet on an inbound truck
i needs to be loaded on an outbound truck o, which gives rise to a start-start precedence
constraint (i, o) ∈ P ⊂ I × O, with P the set containing all couples of inbound trucks i
and outbound trucks o that share a precedence constraint. Each truck j has a release time
rj (planned arrival time) and a deadline d̃j (its latest departure time).

Products can be transshipped directly from an inbound to an outbound truck if the
outbound truck is placed at a dock. Otherwise, the products are temporarily stored and
will be loaded later on. Each couple (i, o) ∈ P has a weight wio, representing the number of
pallets that go from inbound truck i to outbound truck o. The problem aims at determining
time-consistent start times si and so of unload and load tasks i and o so as to minimize
the weighted sum of sojourn times of the pallets stocked in the warehouse. Remark that
the time spent by a pallet in the storage area is equal to the flow time of the pallet: the
difference between the start of loading the outbound trailer and the start of unloading the
inbound trailer (i.e., so − si).

Our problem can be modeled as a parallel machine scheduling problem with release
dates, deadlines, and precedence constraints, denoted by Pm|ri, d̃i, prec|−. As this problem
is a generalization of the 1|rj , d̃j |− problem which is NP-complete (J.K. Lenstra et al. 1977),
even finding a feasible solution for the problem is NP-complete.

3 Time-indexed formulation

A time-indexed formulation discretizes the continuous time space into periods τ ∈
T of a fixed length. Let period τ be the interval [t − 1, t[. It is well known that time-
indexed formulations perform well for scheduling problems because the linear programming
relaxations provide strong lower bounds (M. E. Dyer and L. A. Wolsey 1990).

For all inbound trucks i ∈ I and for all time periods τ ∈ Ti, we have

xiτ =


1 if the unloading of inbound truck i is

started during time period τ ,
0 otherwise,

(1)

with Ti = {ri + 1, ri + 2, . . . , d̃i − pi + 1}, the relevant time window for inbound truck i.
Additionally, for all outbound trucks o ∈ O and for all time periods τ ∈ To, we have

yoτ =


1 if the loading of outbound truck o is

started during time period τ ,
0 otherwise,

(2)

with To = {ro+1, ro+2, . . . , d̃o− po+1}, the relevant time window for outbound truck o.
A time-indexed formulation for the considered truck scheduling problem is the following:

min z =
∑

(i,o)∈P

∑
τ∈T

wioτ (yoτ − xiτ ) (3)



subject to ∑
τ∈Ti

xiτ = 1 ∀i ∈ I (4)

∑
τ∈To

yoτ = 1 ∀o ∈ O (5)

∑
τ∈T

τ (xiτ − yoτ ) ≤ 0 ∀(i, o) ∈ P (6)

∑
i∈I

τ∑
u=τ−pi+1

xiu +
∑
o∈O

τ∑
u=τ−po+1

you ≤ n ∀τ ∈ T (7)

xiτ ∈ {0, 1} ∀i ∈ I;∀τ ∈ Ti (8)
yoτ ∈ {0, 1} ∀o ∈ O;∀τ ∈ To (9)

The objective function (3) minimizes the total weighted usage of the storage area. Con-
straints (4) and (5) demand each truck to be assigned to exactly one gate. Constraints (6)
ensure that if there exists a precedence constraint between inbound truck i and outbound
truck o, then o cannot be processed before i. Constraints (7) enforce the capacity of the
docks for any period τ ∈ T .

4 Network formulation

The formulation below makes use of the well-known concept of a critical set (see e.g. (M.
Lombardi and M. Milano 2012)), i.e., a set of tasks which cannot all be performed in
parallel. We introduce a pair of disjunctive precedence constraints for each task pair (u, v) ∈
(I ∪O)2 with [ru, du]∩ [rv, dv] 6= ∅, belonging to a critical set (the set of these task pairs is
further referred as C). We let E be the set of all critical sets. Additionally, we also refer to ek
as a specific critical set of k elements and to Em ⊂ E as the set of all minimal critical sets.
To model the disjunction, binary variables αuv are introduced such that αuv = 1 ≡ u ≺ v.
Our problem can be modelled as follows:

min
∑
o∈O

sopo −
∑
i∈I

sipi (10)

subject to

so − si ≥ 0 ∀(i, o) ∈ P (11)
sv − su + αuv(Muv − pu) ≥Muv ∀(u, v) ∈ C (12)

sv − s0 ≥ rv ∀v ∈ I ∪O (13)
s0 − su ≥ pu − du ∀u ∈ I ∪O (14)∑

(u,v)∈en+1

αuv ≥ 1 ∀en+1 ∈ Em (15)

αuv ∈ {0, 1} ∀(u, v) ∈ C (16)
su ∈ R ∀u ∈ I ∪O (17)

with Muv = pu − du + rv and 0 a dummy vertex, which is introduced to represent the
time origin s0 = 0. Note that obviously αuv + αvu ≤ 1, even though this constraint is not
mandatory for the formulation accuracy.

Remark that constraints (15) express the limited capacity of the crossdocking terminal.
Their number is exponential, as the number of minimal critical sets is exponential. Even



though including only minimal critical sets is sufficient, we can also consider the non-
minimal critical sets, generalizing (15) as:

∑
(u,v)∈ek

αuv ≥ k − n ∀ek ∈ E (18)

with n+ 1 ≤ k ≤
∣∣ I ∪O ∣∣.

We will show that this family of constraints can be strengthened by augmenting the
right-and-side, so that it can be replaced by:

∑
(u,v)∈ek

αuv ≥
(k − n)(k − n+ 1)

2
∀ek ∈ E (19)

5 Solving methodology framework

Intuitively, only a small number of constraints (19) may be required into the formulation
to obtain a feasible (optimal) solution. Consequently, we consider the following cutting-
plane method which consists in introducing progressively constraints of type (19). First, the
problem is solved without any constraint of type (19) using a MILP solver. Then, violated
constraints of type (19) are added for some k > n involving a critical set ek and the solver
is launched again. Now, each time a feasible solution is found by the solver in course of
the branch-and-cut process, violated constraints of type (19) are added on-the-fly. Note
that if such a solution is feasible with respect to the resource capacity, then it is an upper
bound of the initial problem. When the MILP solver ends up with an optimal solution
also capacity-feasible, it is also optimal. Otherwise, violated constraints of type (19) can
be added again and another MILP is ran. Within various computational time limitation
assumptions, the above methodology will be compared in terms of performance (quality of
the upper and lower bounds) with the time-indexed linear programming approach on a set
of artificial problem instances.
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1 Introduction

Fairness issues arise in several real-world contexts and are investigated in di�erent
research areas of mathematics, game theory and operations research. In classical two-player
bargaining problems, the notion of fairness has been introduced to compare the utility of
one agent to the other agent's.

Here we address fairness concepts in the context of classical single-machine scheduling.
There are two agents, called A and B, each owning a set of jobs, which must be scheduled
on a common processing resource. Each schedule implies a certain utility for each agent. We
adopt the sum of the agents' utilities as an index of collective satisfaction (system utility)
and we refer to any solution maximizing system utility as a system optimum. Even if it
maximizes system utility, a system optimum may well be highly unbalanced and therefore
possibly unacceptable by the worse-o� agent. Rather, a solution that incorporates some
criterion of fairness may be more acceptable. The problem we investigate is how much
system utility must be sacri�ced in order to reach a fair solution. The quantity that captures
this concept is known as price of fairness (PoF ). Given an instance of a bargaining problem,
and a certain de�nition of fair solution, PoF is the relative loss in overall utility of a fair
solution with respect to the system optimum. Depending on the speci�c problem setting
and also on the agent perception of what a fair solution is, assorted de�nitions of fair
solution can be found in the scienti�c literature. In our study we focus on two of the most
popular fairness de�nitions.

Caragiannis et al. (Caragiannis et al. 2012) introduced the concept of PoF in the context
of fair allocation problems: In particular, they compare the value of total agents' utility in a
system optimum with the maximum total utility obtained over all fair solutions (they make
use of several notions of fairness, namely proportionality, envy-freeness and equitability). In
(Bertsimas et al. 2011), Bertsimas et al. focus on proportional fairness and max-min fairness
and provide a tight characterization of PoF for a broad family of allocation problems with
compact and convex agents' utility sets. In (Nicosia et al. 2017) the authors prove a number
of properties on the price of fairness which hold for any general multi-agent problem without
any special assumption on the agents' utilities, focusing on max-min, Kalai-Smorodinski
and proportional fairness. Situations in which the agents pursue the minimization of their
costs (rather than the maximization of their utility) have been dealt with by Ertogral and
Wu (Ertogral and Wu 2000), who derive a measure of fairness among a set of supply chain
members. Another example of fairness in the presence of cost allocations can be found in



(Bohm and Larsen 1994). Our view of fairness is related to scheduling problems, but it
is worth observing that fairness issues arise in other contexts, such as fair representation
problems (Balinski and Young 2001), or the apportionment problem (Lucas 1983). These
need to be dealt with by di�erent methods and algorithms than those presented in this
talk.

2 Scheduling bargaining problems

Bargaining problems address situations in which two players (agents) are faced with a
set of possible agreements (resource set), and must reach a compromise over one of them.
Here we are concerned with the following scheduling bargaining problem. There are two
agents, namely A and B. Each agent has a set of jobs, which have to be processed by a
single machine. Agents A (B) has jobs JA1 , . . . , J

A
nA

(JB1 , . . . , J
B
nB

), of length pA1 , . . . , p
A
nA

(pB1 , . . . , p
B
nB

). Let PA =
∑nA

j=1 p
A
j (PB =

∑nB

j=1 p
B
j ). Jobs cannot be preempted, and the

machine can only process one job at a time. We use the terms A-jobs and B-jobs to refer
to the two agents' respective jobs.

Given a feasible schedule σ, we let fA(σ) and fB(σ) denote the cost values for the
two agents. Here we consider as resource set the set ΣP of Pareto optimal schedules,
as they include all sensible compromise schedules. For each σ ∈ ΣP , we want to de�ne
utility values uA(σ) and uB(σ), so that, for i = A,B, ui(σ) ≥ 0 and ui(σ) increases
as f i(σ) decreases. For this purpose, we propose the following de�nition of utility. Let
f i∞ = max{f i(σ)|σ ∈ ΣP } (for regular functions f i(σ), this is the minimum cost the agent
i bears if its jobs are scheduled after all the jobs of the other agent). Then

ui(σ) = f i∞ − f i(σ) i = A,B

In other words, we consider that an agent's utility is the saving achieved with respect to the
worst schedule for that agent. We also let U(σ) = uA(σ) +uB(σ) denote the overall utility
of schedule σ and let σ∗ denote the schedule that maximizes U(σ) (system optimum), i.e.

U(σ∗) = max
σ∈ΣP

{U(σ)}.

In the following we also let f i∗ = min{f i(σ)|σ ∈ ΣP }.
As for the de�nition of a fair solution, we consider the following two concepts.

1. Kalai-Smorodinsky solution (Kalai and Smorodinsky 1975). Given σ ∈ ΣP , let

ūi(σ) =
ui(σ)

f i∞ − f i∗

be the normalized utility of σ for agent i. A Kalai-Smorodinsky schedule σKS (brie�y,
KS schedule) is de�ned as

σKS = arg max
σ

min
i=A,B

{ūi(σ)}.

The idea is that in σKS the normalized utility of the agent who is worse-o� is maxi-
mized. So, in σKS the two agents' normalized utility values are typically quite close.
Obviously, under this de�nition a KS schedule always exists. In the literature, an-
other de�nition of fair solution is the max-min solution (Bertsimas et al. 2011). Kalai-
Smorodinsky and max-min solutions coincide if fA∞ − fA∗ = fB∞ − fB∗.



2. Proportionally fair solution. A schedule σPF is proportionally fair if, for any other
Pareto optimal schedule σ, it holds(

uA(σ)− uA(σPF )

uA(σPF )

)
+

(
uB(σ)− uB(σPF )

uB(σPF )

)
≤ 0. (1)

The idea behind such de�nition is the following. When considering moving from sched-
ule σPF to any other schedule σ, the relative bene�t that one agent may obtain is
balanced by a not smaller utility decrease for the other agent. This is actually the
same rationale behind the concept of Nash solution (Nash 1950). However, the Nash
solution was introduced only with respect to compact and convex resource sets, while
De�nition (1) is more general. In fact, while a Nash solution always exists, a propor-
tionally fair solution may not exist. If it does exist, then it coincides with the solution
maximizing the product of utilities, and hence, if the resource set is compact and
convex, with the Nash solution.

Our study investigates how much (global) utility should be given up in order to have a
fair solution. This is captured by the price of fairness, de�ned as the relative loss of utility
in a fair solution with respect to maximum utility. Notice that there may be more than
one fair solution, di�ering in terms of global utility. Here we adopt the same viewpoint as
in (Karsu and Morton 2015, Naldi et al. 2016), i.e., whenever this occurs, we measure the
price of fairness with respect to the best fair solution. In formal terms, letting I denote the
set of all instances of a given problem, I one of them, σ∗(I) the system optimum, ΣF the
set of all fair schedules and σF (I) one of them, we de�ne the price of fairness as:

PoF = sup
I∈I

{
min

σF∈ΣF

{
U(σ∗(I))− U(σF (I))

U(σ∗(I))

}}
. (2)

Notice that this is a similar de�nition to the well-known Price of Stability (Anshelevich
et al. 2004), replacing the role of Nash equilibrium with fairness. Hereafter, we indicate
with PoFKS and PoFPF the price of Kalai-Smorodinsky fairness and proportional fairness,
respectively.

3 Scenario addressed

In this talk we address the value of PoF in the following scheduling scenario. Agent
A pursues the minimization of the sum of its jobs' completion times, while agent B is
interested in minimizing the maximum tardiness of its jobs with respect to a common
due date d. Following the usual Graham's notation, we denote this scenario as 1|dBj =

d|
∑
CAj , T

B
max. Note that this scenario includes the case in which B wants to minimize

its jobs' makespan, obtained for d = 0. Note that in this scenario, in any Pareto optimal
solution all B-jobs are scheduled consecutively, so one can assume that B owns a single
job of length PB =

∑nB

j=1 p
B
j . In this scenario, the values fA∗, fA∞, f

B∗, fB∞ can all be

easily computed. In fact, fA∗ is the total completion time of the A-jobs when they are
sequenced in SPT order and fA∞ = fA∗ + nAP

B , while fB∗ = max{0, PB − d} and fB∞ =
max{0, PA + PB − d}.

Our contributions to this scenario are summarized in Table 1. In particular, we show
that PoFKS = 2/3 and PoFPF = 1/2. Moreover, we show that, if the A-jobs are already
ordered by nondecreasing length, in time O(log nA) a proportionally fair solution can be
computed or proved that it does not exist.



Table 1. Results for scenario 1|dBj = d|
∑

CA
j , TB

max (∗) if A-jobs are given in SPT order.

Proportionally fair solution Kalai-Smorodinsky solution

PoF value 1/2 2/3
Existence Established in O(lognA)

∗ (always exists)
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1 Introduction

Operating rooms have been recognized to be the main income source for hospitals
as it generates around 60% of hospital revenues (Macario et. al. 1995) but it counts for
around 40% of hospital costs (Jackson 2002) throughout the use of facilities (operating
rooms, etc.) and the personnel costs. This huge �nancial factor makes the operating rooms
management a priority for hospital managers in order to achieve an e�cient and e�ective
use of the operating rooms. Exhaustive literature reviews on the Surgical Case Scheduling
(SCS) problem are reported in (Cardoen et. al. 2010, Guerriero et. al. 2011).

In this paper, we study a real scheduling problem which consists in scheduling a set
of elective surgical cases which require surgical instruments and tools to several operating
rooms with the objective of minimizing the operating costs while taking into account
the activities of the sterilizing unit. To the best of our knowledge there are very few
literature on such particular problem. For instance (Beroule et. al. 2016) study an operating
room scheduling problem including medical devices sterilization but with the objective of
reducing the number of medical devices needed at the same time. And a branch-and-price
technique is applied in (Cardoen et. al. 2009) to �nd the best order for surgeries in a day
care center in order to optimize several objectives (peak use of recovery beds, occurrence
of recovery overtime, ...) while satisfying the medical devices sterilizing constraints.

This research was performed in collaboration with the University Hospital of Angers
in France (CHU Angers), which has also provided historical data for the experiments. We
propose a mixed integer linear programming model for the problem which is solved in
a lexicographic way. We show that our solutions provide competitive results in terms of
number of operating rooms, and signi�cantly improve those operationally implemented in
terms of overtime and emergencies at the sterilizing unit.

2 Problem description

The CHU Angers includes several blocks and a sterilizing unit which centralizes all
the sterilizing activities. In this study, we focus only on the activities of the Orthopedic
Surgery Block (OSB) and the Sterilizing Unit (SU). There are around 2500 surgeries that
are performed at the OSB per year in its 3 operating rooms. The opening hours for these
3 ORs are di�erent as: room 1 and 2 are open 5 days a week from 8:15 to 17:00, and room
3 is open only 4 days a week from 8:15 to 14:30. Between 10 and 14 surgeons share these
rooms according to a planning indicating the days when they operate, and the list of rooms
that each surgeon can use each day.



Each surgeon has to perform a list of surgeries on an horizon of one month : some of
them can be scheduled anytime during the opening hours of the rooms, whereas others
(ambulatory surgeries) have to be completed before 15:00 to allow the patient to go home
at the end of the day. Each of these surgeries is characterized by an estimated duration
time and requires a list of surgical instruments which are organized in small boxes called
kits. These kits are available in limited quantities. After each surgery, the used kits are kept
into water for 30 minutes for pre-disinfection. Then they are collected at the prede�ned
periods given in table 1 and sent to the SU for sterilization.

Table 1. SU's pickups and deliveries to the OSB.

Pick-up 07:00 11:30 13:00 14:30 16:00 17:30 18:30
Delivery 07:00 - - 14:30 - 17:30 -

At the SU, the sterilization process is being performed in several steps : the instruments
are �rst cleaned by automatic washers, then reassigned in their corresponding kit before
being processed through sterilization machines. Finally, the kits are kept at the SU to cool
o� before being returned to the block. On average, when a kit arrives at the SU, the whole
sterilization process takes around 4h30. From these delivery/collect hours in Table 1 and
from the average kits processing time at the SU, we have the following situations:

1. A kit collected at 11:30, 13:00 or 14:30 on day (t) can be used in the morning on day
(t+1) if it is treated as a priority at the SU (priority kit, case 1). If it is not treated
as a priority, it is considered that it cannot be used before 14:30 on day (t+ 1).

2. A kit collected at 16:00 on day (t) can be used in the morning on day (t + 1) if it is
treated urgently at the SU (urgent kit). If it is not treated urgently, it can be used
from 14:30 on day (t+ 1).

3. A kit collected at 17:30, 18:30 on day (t) or 7:00 on day (t + 1) can be used on day
(t+ 1) from 14:30 if it is treated as a priority at the SU (priority kit, case 2). If it is
not treated as a priority, it will be available on day (t+ 1) from 17:30.

In the current decision process at the CHU, it is only checked whether the surgeries
scheduled each day are compatible with the number of kits owned by the block (the ster-
ilizing courses for kits are neglected during the assignment of surgeries to the shifts).
Consequently, the number of urgent and priority kits in SU to process remains substantial.
The impact on the activity for the SU is immediate. In particular, each urgent kit implies
to stop a machine in order to process it immediately (inducing a need to re-process removed
kits afterward). On the other hand, priority kits are taken into account upon their arrival
by moving them to the start of the queue to be treated �rst, against the �rst-in �rst out
classical policy of SU. Ultimately, in rare cases, some kits may even be requested outside
the delivery hours (violated kits). In that case, it is necessary to request a special shuttle.

The purpose of this work is to schedule all surgeries at the OSB while taking into
account the sterilizing process in order to reduce the pressure on the SU sta�.

In terms of objectives, according to the CHU, the �rst priority remains to schedule all
surgeries in order to minimize the total overtime of the sta� members of the OSB. The
second priority consists in minimizing the number of used operating rooms. Finally, the
third objective is to keep the number of urgent and priority kits as low as possible.

In the next section, we brie�y sketch the basis of a mathematical model for solving this
integrated OSB-SU problem.



3 Mathematical formulation

In order to model this problem, we propose a mathematical formulation based on the
decomposition of the day in four periods : period 1 from 8:15 to 14:00, period 2 from 14:00
to 14:30, period 3 from 14:30 to 15:30 and period 4 from 15:30 to 17:00. The starting and
ending hours of these periods are obtained by the combination of the critical pickup and
delivery hours at the OSB, the opening and closing hours of the operating rooms, and the
fact that surgeries must end 30 minutes before the collect of their medical devices.
We then introduce the following decision variables:

witr binary variable equal to 1 if operation i is scheduled at day t in room r

xbf
itr binary variable equal to 1 if surgery i begins at period b and �nishes at f , on day t, in room r

εtr integer variable representing the total overtime in room r at day t

Ltr binary variable equal to 1 if room r is used at day t

Etk integer variable representing the total urgent kits of type k at day t

Y 1
tk (Y 2

tk) integer variable representing the total priority kits of case 1 (resp. case 2) of type k at day t

In addition to the regular scheduling constraints (all surgeries have to be scheduled in the
horizon, etc), our model includes other constraints such as:

� the expressions of urgent (1) and priority kits (both cases) (2)-(3):∑O
i=1

∑R
r=1 qik.

(∑J
f=2

∑f
b=1 x

bf
itr +

∑2
b=1

∑J
f=b x

bf
i(t+1)r

)
−Qk ≤ Etk ∀t ∈ {1, .., T},∀k ∈ {1, ..,K} (1)∑O

i=1

∑R
r=1 qik.

(∑J
f=1

∑f
b=1 x

bf
itr +

∑2
b=1

∑J
f=b x

bf
i(t+1)r

)
−Qk − Etk ≤ Y 1

tk ∀t ∈ {1, . . . , T},∀k ∈ {1, . . . ,K} (2)∑O
i=1

∑R
r=1 qik.

(∑J
f=2

∑f
b=1 x

bf
itr +

∑J
b=1

∑J
f=b x

bf
i(t+1)r

)
−Qk − Etk ≤ Y 2

tk ∀t ∈ {1, .., T},∀k ∈ {1, ..,K} (3)

where R is the total number of ORs, qik is the total number of kits of type k ∈ {1..K}
that surgery i ∈ {1..O} requires, J represents the total number of periods (4), Qk is
the total available quantity of kit k and T is the total number of days in the horizon.

� the control of the workload of surgeries for each interval of the day and each room (4):

O∑
i=1

γ∑
b=β

γ∑
f=b

pi · xbfitr +
O∑
i=1

β−1∑
b=1

J∑
f=γ+1

dβγrt · x
bf
itr ≤ d

βγ
rt · Ltr + uγ · εtr

∀β ∈ {1, . . . , J},∀γ ∈ {β, . . . , J},∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R}

(4)

where pi is the duration of surgery i, dβγrt is the duration from period β to γ in room
r on day t, uγ is a binary parameter equal to 1 if γ = J .

The multiple objective functions are taken into account by using a lexicographic method
(5) and after each objective is solved, its value is added as an upper bound to the model.
First, f1 minimizes the total over time and then f2 minimizes the number of used rooms
and �nally f3 minimizes the total penalty cost of urgent (cu) and priority (cp) kits.

Minimize Lex
(
f1 :

∑T
t=1

∑R
r=1 εtr ; f2 :

∑T
t=1

∑R
r=1 Ltr ; f3 :

∑T
t=1

∑K
k=1

[
cu · Etk + cp · (Y 1

tk + Y 2
tk)
])

(5)

4 Experimental results

To test and validate our model, we used a 10 instances benchmark provided by the CHU.
Each instance corresponds to the activity of the OSB during one month. The number of
surgeries in these instances varies from 164 to 220. We used CPlex 12.6.1 to solve the
model and a time limit of 3600 seconds was set for each of the three objective functions.

As shown in table 2, which compares the schedule of the CHU with the schedule from
the MILP, our model managed to eliminate the ambulatory surgeries that �nish after 15:00



Table 2. Results comparison

Instance
CHU schedule MILP schedule

#late
ambs

#violated
kits

over
time

#rooms #urgent #priorities
#late
ambs

#violated
kits

over
time

#rooms #urgent #priorities

1 12 0 1043 59 9 40 0 0 0 58 0 2
2 10 5 1336 59 4 44 0 0 440 55 0 3
3 7 10 766 48 3 56 0 0 131 46 0 12
4 10 7 1204 48 15 66 0 0 211 48 0 8
5 15 5 1165 59 14 58 0 0 142 58 0 9
6 4 3 1138 52 0 65 0 0 55 52 0 9
7 5 26 1474 59 1 95 0 0 461 59 0 11
8 9 0 1011 49 2 51 0 0 234 48 0 0
9 6 12 580 46 8 45 0 0 86 43 0 0
10 6 3 714 60 5 31 0 0 133 53 0 0

Average 8.4 7.1 1043.1 53.9 6.1 55.1 0 0 189.3 52 0 5.4

and the need of kits that cannot be delivered in the normal hours (violated kits). In
addition, our model decreased the overtime by around 81.85% (from 14h14 to 3h09) per
month and it closed around 2 rooms in average each month. Finally, our model was able
to decrease the number of urgent and priority kits by around 91.17% (from 61.2 to 5.4)
per month.

5 Conclusions and perspectives

This work focuses on a real surgical case scheduling including sterilization activity
constraints, and three objective functions. We propose an MILP formulation which is
solved in a lexicographic fashion. Our solutions provide competitive results in terms of used
rooms, and signi�cantly improve those operationally implemented in terms of overtime and
urgent and priority kits at the SU. Still in line with the needs of the CHU Angers, the next
step is to address the online version of the problem.
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1 Abstract

The two-stage assembly scheduling problem is a well-known problem from the literature
with a lot of practical applications. It consists of a system with two stages where a set of
n jobs must be processed in a given sequence. First stage is composed of m machines, each
one produces a component to be assembled in one single machine at the second stage.
One typical assumption in all the previous literature is the absence of buffer limitations
between both stages but this is too unrealistic from a practical point of view. Under Lean
Manufacturing paradigm, it is interesting to minimize the time that all jobs wait in the
buffers and total machine blocking time. This study presents a mathematical model to two
stage assembly flowshop scheduling problem with finite storage conditions together with
a complete enumeration study for small instances. The aim of the research is to show the
effect of buffer size over the total blocking time plus inventory time.

2 Introduction

Since the seminal paper of Johnson (1954) an extensive amount of papers has been
published related with scheduling problem. Most of them with the unrealistic assumption
of no buffer limitations between machines This is too unrealistic under Lean Manufacturing
paradigm and it has been less studied in the literature. The first paper about limited
buffer scheduling was (Dutta and Cunningham 1975) who studied a flowshop problem with
capacitated buffers using dynamic programming. Later, (Papadimitriou and Kanellakis
1980) probed this problem is NP-hard in the strong sense and developed a relation between
a heuristic developed for the problem and buffer size. Due to the complexity of the problem,
several authors developed heuristic approaches. First one was the paper of Leinsten (1990)
what showed a general framework for scheduling problem with capacitated buffer (limited
buffer size, blocking and no wait problems) and studied several heuristic rules, concluding
the high performance of NEH rule of Nawaz et al. (1983). Later Nowicki (1999) developed
a Tabu Search approach using some job properties from graph representation to accelerate
the local search by eliminating sets of solutions that do not improve the current solution.
Other approaches were Tabu Search of Brucker et al. (2003), Genetic Algorithm of Wang
et al. (2006), Particle Swarm Algorithm of Liu et al. (2008), immune system algorithm of
Hsieh et al. (2009) or the Ant Colony Algorithm of Rossi and Lanzetta (2013).

Simultaneously, other kind of scheduling problems called assembly flowshop has at-
tracted the interest of the researchers. Regarding makespan minimization, Lee et al. (1993)
and Potts et al. (1995) probed this problem is NP-hard even for two and M machines at
the first stage. The best approach up to now to solve the problem with makespan was
proposed by Hariri and Potts, (1997) using Branch and Bound techniques. Regarding to-
tal completion time minimization in assembly flow shops, Framinan and Perez-Gonzalez



(2017) proposed a constructive heuristic and a metaheuristic that outperform all the pre-
vious heuristics.

However, there are no previous research about limited storage two stage assembly flow-
shop with buffering and blocking time as objective function. So our aim is to study the
effect of buffer size between both stages. First, a complete enumeration study will be pre-
sented and used to investigate the effect of buffer size changes over small size problems
based on Taillard (1993) instances. Later, a mathematical model will be presented and used
to optimize the sequence for medium instances. The results let us confirm the interest of
this kind of problem and the necessity to develop procedures for study realistic instances.

3 Complete enumeration study

In order to show the effect of buffer size over makespan for small instances (up to
nine jobs), a test based in complete enumeration has been carried out considering that
there is an identical buffer of size b between each component machine and the assembly
one. We used some instances from Taillard’s set where first machine was used to represent
processing time in assembly machine and the rest represents processing time in component
manufacturing machines. All the sequences for the same instance have been computed for
buffer size between 0 and 4.

The following figures represent the results for all the 9! sequences from Ta004 instance
(in our case a shop with one assembly machine plus four component machines) and the
empirical distribution of blocking plus buffering times depending of buffer size. It can be
seen from both figures that there are difference between each solution space depending on
buffer size.
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Fig. 1. Distribution for N = 9 jobs and different buffer size.

It can be seen that maximum number of solutions decreases for each objective function
value when buffer size increases. On the other hand, when buffer size increases, distribution
width increases too.

Figure 2, shows that when buffer size increases is more difficult to find a good solution
randomly. For example, for zero buffer size all solutions are under 50% from optimal value
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Fig. 2. Empirical cumulative distribution for N = 8 jobs.

but for buffer size equal to 3, there are only 2.3% of solutions. That support the idea that it
is “easier” to find a good solution randomly in blocking assembly shops for these objective
function.

4 Mathematical model

A second step to study the problem for medium size instances is to develop a mathe-
matical model. It is necessary the following notation to formalize the model.

Let:

i, index for jobs or components i = 1, . . . , n
j, index for sequence positions j = 1, . . . , n
k, index for machines and buffers k = 1, . . . , m
MCk, component manufacturing machines k = 1, . . . , m. Each machine has a capaci-
tated buffer BCk, k = 1, . . . , m.
pcj,k is the processing time of job in position j in machine k
pj is the processing time of job in position j at assembly machine
bk is the capacity of buffer k
SCjk is the starting time of component to be assembled at position j in machine k
Sj is the starting time of job to be assembled at position j in the assembly machine

xij =
{

1, if component/job j is sequenced on position j
0, otherwise.

Thus, mathematical model can be stated as follows:

min z =
n∑

j=1

m∑
k=1

(Sj−b − SCjk − pcjk) +
n∑

j=1

m∑
k=2

(Sj − Sj−b)



s.t.
SC1k = 0, k = 1, . . . , m

S1 ≥ SC1k +
n∑

i=1
xi1 pcik, k = 1, . . . , m

SCjk ≥ SCj−1,k +
n∑

i=1
xi,j−1 pcik, j = 2, . . . , n, k = 1, . . . , m

SCjk ≥ Sj−bck−1,k, j > 2, . . . , bck + 1, k = 1, . . . , m

Sj ≥ Sj−1 +
n∑

i=1
xi,j−1 pi, j = 2, . . . , n

Sj ≥ SCjk +
n∑

i=1
xij pcik, j = 2, . . . , n, k = 1, . . . , m

n∑
i=1

xij = 1, j = 1, . . . , n

n∑
j=1

xij = 1, i = 1, . . . , n

xij ∈ {0, 1}, i, j = 1, . . . , n
Sj , SCjk ≥ 0, j = 1, . . . , n, k = 1, . . . , m.

First term on the objective function represents total blocking time while the second
one computes total buffering time for a given sequence. Set of constraints represents the
relations between starting time of every operations under finite storage assumption.

Mathematical model was tested with some Taillard’s instances (Ta001 to Ta020 and
Ta031 to Ta050) adapting them to the assembly flowshop problem. The results show that
it is possible to solve optimally instances until 20 jobs and 4 component machines. More
results about this study will be presented at the conference.

5 Conclusions and future work

In this paper we presented a study about two stage assembly flowshop scheduling prob-
lem with limited buffers of size b. Instead of classical objective functions like makespan or
total flowtime, we study a composed function of total buffering time plus total blocking
time. A complete enumeration study shows that solution space shape changes with the
size of the buffers and it seems a promising field for researchers due to the relation of ob-
jective function with the improvement in production systems under Lean Manufacturing
paradigm.

Moreover, a new mathematical model is described and some results are presented. Our
aim is to develop competitive heuristic procedures to solve realistic instances and get more
insights about the relationship between buffer size and assembly flowshop performance
under finite storage conditions.
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1 Introduction

The Resource-Constrained Project Scheduling Problem (RCPSP) is considered. This
problem is NP-hard in strong sense (Garey and Johnson 1975). In this paper, a new
polynomial-time approach is developed to �nd an upper bound on resource consumption.
This bound can be also used to calculate a lower bound for makespan. Furthermore, the
procedure helps to increase the e�ciency of existing propagators and to improve constraint
programming model performances by tightening decision variables domains.

We consider the following formulation of RCPSP with continuous time. There is a set
of tasks N and a set of renewable resources R. The capacity of resource X ∈ R is de�ned
by non-negative piecewise constant function cX(t) which consists of constant functions
c1X(t) = c1,∀t ∈ [0, t1); c

2
X(t) = c2,∀t ∈ [t1, t2); . . . , c

m
X(t) = cm,∀t ∈ [tm−1, T ]. For any

task j ∈ N , the following parameters are given: pj � processing time and ajX � required
amount of resource X ∈ R for task j.

Precedence relations between tasks are given by a directed acyclic graph G = (N,E).
If an edge eji ∈ E exists, it means that task j must be �nished before the starting time of
task i (j → i).

Time horizon T is de�ned and for each j ∈ N the parameters of task processing domain
are given: rj � release time, the earliest time from which task j can be started and Dj �
deadline, the latest time for �nishing task j. In case if this parameters are not given we
can set rj = 0, Dj = T for each j ∈ N , and then use some polynomial-time propagators
to tighten domains [rj , Dj ] of task processing.

We consider the decision version of RCPSP without objective function, but we have to
�nd a schedule which satis�es precedence relations and resource constraints with makespan
value lower than T .

The paper is organised as follows. In section 2 the overview of resourced-based propa-
gators is presented. In the section 3 we give the main idea of our approach and theorems on
which it is based on. Then, we discuss some generalizations of RCPSP problem for which
presented approach is applicable and make some conclusion remarks in section 4.

2 State of the art

Our research is focused on improving constraint programming model and propagators,
which use resource constraints to make decision variable intervals tighter. There are a lot of



propagators, based on resource consumption constraints. (Lahrichi 1982) �rstly calculated
�resource compulsory part�, (Le Pape 1988) created �time tables�. Then (Fox 1990) intro-
duced the term �resource pro�le� and (Caseau and Laburthe 1996) presented �resource
histogram�. Sweep algorithm to calculate resource pro� le was presented by (Beldiceanu
and Carlsson 2001). Several e�cient propagators based on time-tabling algorithms were
developed in literature (Schutt et. al. 2011), (Ouellet and Quimper 2013). Other propaga-
tors were discussed in (Baptiste et. al. 2001), (Vilim 2007) and in makespan lower bound
surveys (Neron et. al. 2006) and (Knust 2015).

3 Calculating an upper bound on highest possible resource consumption

For each resource X ∈ R and any time t ∈ [0, T ] we de�ne an upper bound on highest
possible resource consumption in time interval [0, t) by UX(t). In (Arkhipov et. al. 2017)
we presented an algorithm for a discrete version of RCPSP to estimate UX(t) in O(n2r(n+
m + r)T log T ) operations, where n � number of tasks, r � number of resources, m � the
highest number of breakpoints in resource capacity function, T � time horizon. The main
idea of this algorithm was as follows. First of all, the algorithm uses some polynomial-time
propagators to tighten processing intervals [rj , Dj ] for each j ∈ N . Then, for each task
j ∈ N , resource X ∈ R and timeslot t ∈ 1, . . . , T the highest possible consumption of X
by j in interval [0, t] is calculated and de�ned by AjX(t).

Then the RCPSP problem is considered for each pair of resources X,Y ∈ R and the
following task processing constraints:

� preemptions of task processing are allowed;
� tasks are able to continue processing after deadline;
� amount of resources X and Y consumed by task j in timeslot [t, t + 1] can be not
equal to ajX and ajY respectively, but functions ujX(t) and ujY (t) � total amounts of
resources X and Y in time interval [0, t] should satisfy the following constraints:

ujX(t) ≤ AjX(t),

ujY (t) ≤ AjY (t),

ujX(t)

ujY (t)
=

ajX
ajY

.

The objective is to �nd the functions ujX(t) and ujY (t) for any t ∈ [0, T ] subject to
maximizing the objective functions

UX|Y (t) =
∑
j∈N

ujX(t),

UY |X(t) =
∑
j∈N

ujY (t)

for any t ∈ [0, T ].
The Master Algorithm which �nds an optimal solution for this problem iterates on

timeslots t = 1, . . . , T , solving the following optimization problem for each pair of resources
X,Y .

Timeslot problem. For each j ∈ N values ujX(t − 1) and ujY (t − 1) are given

and functions AjX(t), AjX(t) are de�ned. Determine ujX(t) ≥ ujX(t − 1) and ujY (t) ≥
ujY (t− 1) for all tasks j ∈ N such that

maxUX(t), UY (t)



subject to resource capacities∑
j∈N

(ujX(t)− ujX(t− 1)) ≤ cX(t),

∑
j∈N

(ujY (t)− ujY (t− 1)) ≤ cY (t)

and constraints
ujX(t)− ujX(t− 1)

ujY (t)− ujY (t− 1)
=

ajX
ajY

,

ujX(t) ≤ AjX(t), ujY (t) ≤ AjY (t).

If for any time slot there is more than one solution satisfying these conditions, choose

the one using the following criterion:

min
∑
j∈N

√
(ujX(t)− ujX(t− 1))2 + (ujY (t)− ujY (t− 1))2.

The developed geometric algorithm solves this optimization problem in O(n2) opera-
tions.

The objective of this paper is to show that this algorithm can be used for RCPSP
formulation with continuous time. We will call a time point Ti ∈ [0, T ] a breakpoint if Ti

is a release time of any task j ∈ N , i.e. T i = rj or Ti is a T i = tk � start or end of any
segment of function cX(t). Total number of breakpoints is b ≤ n + m. We assume that
the breakpoints are ordered in ascending order: 0 = T1 < T2 < . . . < Tb = T . Note that
the size of a timeslot does not matter for the Master Algorithm. Therefore, we consider
intervals [T1, T2), . . . , [Tb−1, Tb) like timeslots and use Master Algorithm to �nd functions
ujX(t), ujY (t) for each j ∈ N and each timeslot. According to the theorem proved in
(Arkhipov et. al. 2017) obtained functions UX|Y (t) and UY |X(t) would be an upper bound
on resource X and Y consumption respectively for any t = T1, . . . , Tb if for any timeslot
and any t ∈ [Tk, Tk+1] u

′
jX(t) = const. The following lemma proves that these conditions

can be simpli�ed.
Lemma 1.

Suppose there is a set of functions u1X(t), . . . , unX(t) de�ned on timeslot [Tk, Tk+1] which
satisfy the constraints of the Timeslot problem for any t ∈ [0, T ]. Then function

uujX(t) =
1

Tk+1 − Tk

∫ Tk+1

Tk

ujX(t)dt

de�ned for all j ∈ N satis�es the constraints of the Timeslot problem and uu′jX(t) = const.
Each feasible schedule de�nes a set of integrable functions u1X(t), . . . , unX(t). Since

uujX(Tk) ≤ ujX(Tk), Lemma 1 implies that functions UX|Y (t) and UY |X(t) provided by
the Master Algorithm give an upper bound on amount of resources consumed by the tasks
belonging to set N in time interval [0, Tk+1). The complexity of the Geometric Algorithm
to solve Timeslot problem is O(n2). Hence the Master Algorithm complexity equals to
O(n2(n + m)), i.e. total number of cycled timeslots is not more than n + m. Therefore
functions UX|Y (t) and UY |X(t) could be found for all pairs of resources (X,Y ) ∈ R2 in
O(r2n2(n +m)) operations, where r � number of resources. An upper bound on resource
consumption in interval [0, t) can be de�ned correctly for any t = T1, . . . , Tn :

UX(t) = min
Y ∈R

UX|Y (t).



4 Applications & Generalizations

In this paper, a polynomial algorithm to estimate an upper bound on resource amount
used in time interval [0, t] is presented. This approach can be applied not only to the clas-
sical RCPSP formulation but for other RCPSP statements with segment-constant resource
capacity functions, i.e. RCPSP/max.

Obtained functions UX(t) can be used in resource-based propagators to evaluate resource-
using pro�les. Our future research will be focused on development of direct methods to
improve existing resource-based propagators and to create new techniques of bounding
resource usage function.
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1 Introduction

Manufacturing of a product consisting of different parts, where parts are processed by
different machines in parallel at the first stage, and all the processed parts of the product
are assembled at the second stage can be considered as a two-stage assembly flowshop
scheduling problem.

The problem was addressed with respect to different performance measures, e.g., makespan,
total completion time, and maximum lateness. Moreover, the problem was addressed with
zero and non-zero setup times. There are some applications where assumption of zero
setup times is valid. However, the assumption is not valid for some other applications, e.g.,
Allahverdi (2015).

The problem with total tardiness performance measure was addressed by Allahverdi
and Aydilek (2015) assuming zero setup times. They proposed several heuristics including
a genetic algorithm.

Allahverdi and Al-Anzi (2006) provided a dominance relation and presented a few
heuristics for the problem with respect to maximum lateness performance measure for zero
setup times while Al-Anzi and Allahverdi (2007) presented several heuristics, including
Particle Swarm Optimization (PSO), Tabu search, and Self-Adaptive Deferential Evolution
(SDE), for the problem with setup times. Al-Anzi and Allahverdi (2007) showed that the
SDE heuristic outperforms the others not only in terms of the error but also in terms of
the CPU time.

In this paper, we address the problem with maximum tardiness performance measure
with non-zero setup times. The maximum tardiness performance measure is used in the
scheduling literature. This is because for some applications completing a job after its due
date results in a penalty which increases as the gap between the due date and completion
time widens.

It should be noted that a sequence that minimizes maximum lateness also minimizes
maximum tardiness. As a result, the SDE heuristic of Al-Anzi and Allahverdi (2007) is
not only the best existing heuristic for the problem with maximum lateness performance
measure but also the best existing heuristic with respect to the maximum tardiness perfor-
mance measure. Therefore, we compare the performance of our newly proposed algorithm,
to be developed in this paper, with the SDE algorithm of Al-Anzi and Allahverdi (2007),
which is known to be the best existing algorithm for the problem. We show that perfor-
mance of the newly developed algorithm in this paper significantly outperforms that of the
SDE algorithm of Al-Anzi and Allahverdi (2007).



2 The proposed Simulated Maximum Insertion (SMI ) algorithm

Al-Anzi and Allahverdi (2007) presented several algorithms and showed that the algo-
rithm of self-adaptive differential evolution (SDE) outperforms the others for the two-stage
assembly flowshop scheduling problem with non-zero setup times to minimize maximum
lateness. The algorithm SDE of Al-Anzi and Allahverdi (2007) is the only benchmark ex-
isting algorithm, in the literature, to compare our algorithm with. The parameter values
of the algorithm SDE are taken as the ones given by Al-Anzi and Allahverdi (2007). How-
ever, for a fair comparison, the number of generations in the SDE is selected so that the
algorithm proposed in this paper and the SDE algorithm have the same computational
time. Our algorithm, called SMI, is explained next.

Simulated Maximum Insertion (SMI ) algorithm is a hybrid of simulated annealing
algorithm and maximum insertion algorithm. In the maximum insertion algorithm, for a
given sequence, the job with the maximum tardiness is inserted to certain positions in the
sequence and the sequence is updated if the insertion decreases the maximum tardiness.
It is observed that repeating this procedure decreases the maximum tardiness of a given
sequence significantly. Therefore, we combined the maximum insertion algorithm with the
simulated annealing algorithm in order to obtain the hybrid algorithm. In the hybrid
algorithm, given a sequence and given initial parameters, we apply the swap and insertion
operators to obtain two new sequences and the better one among the two is selected. The
current sequence is updated whenever one of these new sequences, the better one, improves
the objective function. If the objective function is not improved, then the current sequence
is updated with the better one with certain probability. When the temperature is high,
this probability is large and as the temperature decreases the probability of choosing an
inferior sequence decreases. In order not to trap to a local solution, the solution space is
explored for high temperatures and exploited for low temperatures. Then, the maximum
insertion algorithm is applied. At high temperatures, the job with the maximum tardiness
is inserted to every z-th position rather than every position in the sequence and this is
repeated z times. Thus, this gives more chances to explore alternative solutions. As the
temperature decreases, the value of z decreases which helps to exploit the sequence. Once
the temperature drops below the final temperature, the maximum insertion algorithm is
applied such that the job with the maximum tardiness is inserted to every position in
the sequence and the procedure is repeated certain times in order to improve the solution
further. In short, inserting the job with maximum tardiness strengthens the exploration
step of the simulated annealing algorithm at the beginning when the temperature is high
and reinforces the exploitation step of the simulated annealing algorithm towards the end
when the temperature is low. The hybrid algorithm requires an initial sequence, which
affects the performance of the algorithm. We construct some initial sequences as follows.
We first convert the problem to a single machine scheduling problem by aggregating the
processing times and setup times at both stages. The aggregation can be performed in
several ways. Four of the aggregated processing times are

AP0(i) = max{ max
j=1,...,m

(tij + sij), (si + pi)},

AP1(i) = max
j=1,...,m

(tij + sij) + (si + pi),

AP2(i) = max
j=1,...,m

(tij + sij),

AP3(i) = max{( max
j=1,...,m

(tij + sij) + min
j=1,...,m

(tij + sij))/2, (si + pi)}.



Then, by applying the shortest processing time (SPT ) rule to the aggregated processing
times, we obtain a sequence for each one. In addition to these sequences, we also considered
the sequence obtained from earliest due date (EDD) rule and the best performing sequence
among the five sequences is taken as the initial sequence and denoted as seqb.

Simulated annealing algorithm has parameters, which need to be calibrated for the
problem which are initial temperature, TPi, final temperature, TPf , cooling factor, cf ,
and number of repetitions, Nr. The following table presents the values considered for the
calibration and the selected values for the parameters followed by the steps of the SMI
algorithm.

Table 1. Considered and selected values for the parameters of SMI

Parameters Tested values Selected values
Initial temperature (T Pi) 0.10, 0.11, 0.12, 0.13, 0.14, 0.15 0.12
Final temperature (T Pf ) 0.0001, 0.0005, 0.0010, 0.0020 0.0010
Cooling factor (cf) 0.970, 0.975, 0.980, 0.985, 0.990 0.975
Number of repetitions (Nr) 20, 30, 40 30

3 Algorithm Evaluation

The performances of the existing algorithm SDE and the proposed algorithm SMI are
compared in this section. Computations were executed on a PC with Intel Core i7-3520M
CPU processor of 2.9 GHz with 8 GB RAM.

A uniform distribution U(1, 100) is used to generate processing times on all the machines
including the assembly machine. Similarly, setup times at both stages are generated from
a uniform distribution U(0, k · 100) where the parameter k denotes the expected ratio of
setup times to processing times. Job due dates are generated from a uniform distribution
over the interval of [L(1−T −R/2), L(1−T +R/2)] where L denotes an approximate value
for makespan. The parameter R denotes relative range of due dates while the parameter T
denotes tardiness factor. Therefore, as T increases the due dates become smaller. On the
other hand, the difference between job due dates increases as R increases. The generation
of due dates by using this method is common in the scheduling literature. The values of
T and R are usually taken to be between 0 and 1 in the literature. Therefore, we have
also selected R and T values in the same range. In the experimentations, the following LB
value was first used instead of L where

LB = max

(
max

k=1,...,m

{
n∑

r=1

(
t[k,r] + s[k,r]

)}
+ min

j
{pj + sj},

max
k=1,...,m

{
min

r=1,...,n

(
t[k,r] + s[k,r]

)}
− min

j
{sj} +

n∑
r=1

(
p[r] + s[r]

))
.

Nevertheless, the aforementioned LB may lead to an environment where no job is tardy.
Thus, we have generated n random sequences, and computed the average makespan, which
may be considered as an upper bound, denoted by LU . Subsequently, the average of the
LB and LU is computed to obtain the value of L as an approximate makespan.

The values of parameters utilized in the computational experiments are summarized in
Table 2.



Table 2. Parameter values

Parameter Considered values
N 30, 40, 50, 60, 70
M 3, 5, 8
K 0.4, 0.8, 1.2
R 0.3, 0.5, 0.7
T 0.2, 0.4, 0.6

There are a total of 405 combinations of n, m, k, R, and T values. For each combination
of the parameter values, fifty replicates are generated. Therefore, a total of 20,250 problems
are considered.

The existing and proposed algorithms are assessed by using the performance mea-
sure of percentage error (Error). The Error is defined as 100(Tmax of the algorithm −
Tmax of the best algorithm)/Tmax of the best algorithm where Tmax denotes maximum tar-
diness.

Figure 1 indicates the error versus the number of jobs for both the SDE and SMI
algorithms. It is obvious from the figure that the proposed SMI algorithm performs signifi-
cantly better than the existing SDE algorithm. The gap between the performances of SDE
and SMI algorithms monotonically increases as n increases. This is another advantage of
SMI over SDE.

Figure 2 summarizes the errors of SMI and SDE algorithms versus the setup to process-
ing time ratio k. The figure clearly indicates that the SMI algorithm performs significantly
better than the SDE algorithm for k values. The performances of both algorithms SMI
and SDE do not seem to be sensitive to k value.

Given that the CPU times of both algorithms are the same, the error of SMI is negligible
compared to the error of SDE algorithm as the overall average error of the SMI algorithm
is 0.057 while that of the SDE algorithm is 4.17. Therefore, the proposed SMI algorithm
reduces the error of the best existing SDE algorithm by 98.6%.

We also performed statistical tests to verify the conclusions stated above. For example,
Figure 3 shows 95% confidence interval graph for the case of n = 70, m = 8, R = 0.3,
T = 0.6, and k = 0.8 for which the performances of the algorithms are the closest. Even in
this case, the p-value is less than 0.01, which implies that the error of SMI is statistically
less than that of SDE.

4 Conclusion

We investigate a two-stage assembly flowshop scheduling problem where setup times
are considered as separate from processing times. The objective is to minimize maximum
tardiness. The literature reveals that the algorithm of Self-Adaptive Differential Evolution
(SDE) performs as the best for the problem. We propose a new hybrid simulated annealing
and insertion algorithm, called SMI. We compare the performance of the proposed SMI
algorithm with that of the best existing algorithm, SDE. The computational experiments
indicate that the proposed SMI algorithm performs significantly better than the existing
SDE algorithm. More specifically, under the same CPU time, the proposed SMI algorithm,
on average, reduces the error of the best existing SDE algorithm over 90%, which indicates
the superiority of the proposed SMI algorithm.
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1 Introduction

We address the no-wait flowshop scheduling problem. The no-wait flowshop scheduling
problem is applicable in many industries, such as plastic, chemical, and pharmaceutical,
e.g. Hall and Sriskandarajah (1996) and Allahverdi (2016).

The total tardiness and makespan performance measures are considered in this paper.
Today’s fierce global competition makes the total tardiness performance measure important
since customer satisfaction is affected by the fulfillment of due dates. On the other hand,
the makespan performance measure is directly related to resource utilization as many
resources are scarce and efficient utilization of such scarce resources is important for many
manufacturing firms. Therefore, both performance measures are critical.

The m-machine no-wait flowshop scheduling problem with the makespan performance
measure has been addressed widely in the literature. For example, Tseng and Lin (2010)
presented a hybrid genetic algorithm (GA), which hybridizes a novel local search scheme
and the GA. Tseng and Lin (2010) indicated that their hybrid GA performs better than
the heuristics the earlier algorithms Furthermore, Jarboui et al. (2011) presented another
hybrid GA algorithm where the variable neighborhood search is utilized to further improve
(in the last step) their GA. On the other hand, Lin and Ying (2016) proposed a three-
phase heuristic. In the first phase, two constructive heuristics are used to obtain an initial
sequence. In the second phase, the problem is transformed into an asymmetric traveling
salesman problem and an algorithm is used to improve the initial solution. In the last
phase, a mathematical model is used to further improve the solution.

The m-machine no-wait flowshop scheduling problem with a total tardiness (TT ) per-
formance measure has also been addressed in the literature. Aldowaisan and Allahverdi
(2012) presented several dispatching rules for the problem with respect to total tardiness.
They also proposed a simulated annealing (SA) and a genetic algorithm (SA). Furthermore,
Liu et al. (2013) presented dispatching rules and constructive heuristics, including a mod-
ified NEH, for the problem. They indicated that the modified NEH performs better than
the dispatching rules and the constructive heuristics. Moreover, Ding et al. (2015) studied
the problem and explored the objective function evaluation incremental properties. They
presented an accelerated NEH and iterated greedy algorithms based on the incremental
properties. They indicated that the accelerated algorithms perform much faster than the
original algorithms. They further showed that their proposed algorithms perform better
than those of Aldowaisan and Allahverdi (2012) and Liu et al. (2013).

The aforementioned research addressed a single criterion while many scheduling en-
vironments require considering multi criteria. We address m-machine no-wait scheduling
problem to minimize total tardiness subject to the constraint that makespan is less than a
certain value.



2 Algorithms

We propose an algorithm and adapt three existing algorithms to our problem. The ex-
isting algorithms are given in the next subsection while the proposed algorithm is presented
in the following subsection.

2.1 Existing algorithms

The m-machine no-wait flowshop scheduling problem to minimize total tardiness was
addressed by Aldowaisan and Allahverdi (2012) who presented an algorithm, called FISA,
which was shown to perform as the best out of the six algorithms they considered. Moreover,
Liu et al. (2013) also considered the same problem and proposed six heuristic approaches
and indicated that the heuristic MNEH is the best. In addition, Ding et al. (2015) provided
three algorithms and indicated that the algorithm AIG1 performs the best. We adapt the
algorithms FISA, MNEH, and AIG1 to our problem, which are denoted by A-FISA, A-
MNEH, and A-AIG1. We propose a new algorithm, which is called Algorithm HA, in the
next subsection and compare our algorithm with the existing best algorithms of FISA,
MNEH, and AIG1.

2.2 The proposed algorithm (HA)

The algorithm HA utilizes both the simulated annealing algorithm and the insertion
algorithm.
Algorithm HA

1. Obtain a C value, and choose an initial sequence si, set the parameters ti, tf , λ, N
and I, set the sequence st = si, and i = 1

2. Set the intermediate temperature tt = ti

3. Generate a sequence by swapping two random jobs of st and call it ss
4. If TT (ss) < TT (st) then update st with ss. Otherwise, update st with ss if rand < e− D

tt

where D = (TT (ss) − TT (st))/TT (st) and rand is U [0, 1]
5. Update the intermediate temperature tt such that, tt = tt · λ
6. If tt < tf , go to Step 7, otherwise go to Step 3
7. If Cmax(st) < C, update i = i + 1 and go to Step 15. Otherwise, go to Step 8
8. Set pi = n
9. Set pj = 1

10. Insert the job in position pi of the sequence st to position pj and call the new sequence
sm

11. Evaluate C1 = Cmax(sm), and C2 = Cmax(st). If C1 < C, update st with sm, and
update i = i + 1, then go to Step 15. Otherwise, go to Step 12

12. Update pj = pj +1. If C1 < C2 then update st with sm. Then go to Step 10 if pj < n.
Otherwise, go to Step 13

13. Update pi = pi − 1, and go to Step 9 if pi > 0. Otherwise, go to Step 14
14. Update st with si if Cmax(st) > C. Update i = i + 1 and go to Step 15
15. If i < I, go to Step 2

The parameters of the simulated annealing part of the algorithm are calibrated based
on the values given in the following table. Selected values are 0.14 for ti, 0.001 for tf , 0.98
for λ, and 20 for N .



3 Algorithm evaluation

Computations were conducted on a PC with Intel Core i7-3520M CPU processor of
2.9 GHz with 8 GB RAM. An appropriate C value is usually given by the scheduler
as stated earlier. However, there is a need to know the C value for the computational
experiments. First we reduce the m-machine problem into a two-machine problem such
that the processing time of machine one is the sum of the processing times on the first m/2
((m + 1)/2 if m is odd) machines while the processing time of machine two is the sum of
the processing times on the remaining m/2 ((m − 1)/2 if m is odd) machines. Then, we
apply Johnson’s algorithm to the two machine problem to obtain a sequence s. Next, we
take the first job in the sequence s and insert it in all the n positions of the sequence s
which results in n different sequences. We take the minimum Cmax of all the n sequences,
which is the C value.
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The uniform distribution of U(1, 99) was used to generate processing times on all the
m machines. The uniform distribution of U [LB(1 − T − R/2), LB(1 − T + R/2)] is used
in generating job due dates where LB denotes an approximate value for makespan. The
parameter R indicates a relative range of due dates while the parameter T denotes a
tardiness factor, i.e., a larger T value results in a smaller due date. In contrast, as the
R value increases, the difference between job due dates increases. The values of T and R
are usually taken to be between 0 and 1 in the literature. Thus, we have also selected R
and T values between 0 and 1. We use a lower bound on makespan LB which is used by
Aldowaisan and Allahverdi (2012). The utilized values of n, m, R, and T are summarized
in Table 1.



Table 1. Parameter values

Parameter Considered values
n 40, 50, 60, 70, 80
m 3, 5, 10, 12
R 0.2, 0.6, 1.0,
T 0.2, 0.4, 0.6,

The performance measure utilized in evaluating the algorithms is the Average Relative
Deviation Index (ARDI) as a percentage, which is

ARDI = 100
Nr

Nr∑
k=1

TTk − TTbest

TTworst − TTbest

Figure 1 summarizes the ARDI values of the proposed algorithm HA, and the adapted
algorithms of A-FISA, A-MNEH, and A-AIG1 with respect to n. The figure clearly shows
that the algorithms HA performs much better than the others.

The overall average ARDI values of the algorithms A-FISA, A-MNEH, A-AIG1, and
HA are 98.5, 65.1, 17.6, and 4.6, respectively. Therefore, the proposed algorithm HA reduces
the error of the best adapted algorithm A-AIG1 by 74%. It should be noted that the CPU
times (less than two minutes) of the algorithms are same.

The aforementioned conclusions are statistically tested by using the Tukey Honest Sig-
nificant Difference (HSD) test at α = 0.025. Figures 2 shows the results for a combination
of the parameters, which is representative of the vast majority of the combinations. The
statistical results, in general, validate the earlier conclusions.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

0 20 40 60 80 100 120

HA

A-AIG1

A- MNEH

A-FISI 

3 groups have means significantly different from HA

Fig. 2. Confidence intervals for n = 50, m = 10, R = 0.2, T = 0.6.



4 Conclusion

We consider the m-machine no-wait flowshop scheduling problem to minimize total
tardiness subject to the constraint that the makespan is less than a given value. We pro-
pose an algorithm, which is a combination of simulated annealing and insertion algorithm.
Moreover, we adapt three best existing algorithms for minimizing total tardiness to our
problem. We conduct extensive computational experiments to compare the performance of
our proposed algorithm with the three best existing algorithms under the same CPU times.
The computational analysis indicates that the error of algorithm is 74 percent smaller than
that of the best of the three adapted algorithms. All the results are statistically verified.
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1 Introduction and Motivation

The multi-mode resource constrained project scheduling problem (MRCPSP) aims to
minimize the makespan by selecting activities’ modes and scheduling project activities
under precedence and resource constraints. It extends the resource constrained project
scheduling problem (RCPSP), by assuming that activities can be performed under one of
several modes, where a mode determines an activity’s duration and its resource require-
ments. RCPSP and MRCPSP are NP-hard (Blazewicz et al., 1983), so real problems are
often solved by heuristic methods. Most researches consider the RCPSP and MRCPSP
parameters as deterministic although some of the research treats uncertainty. For exam-
ple, Herroelen and Leus (2005) review procedures for generating feasible baseline schedules
with respect to a specific objective (e.g. makespan minimization or net present value max-
imization) under uncertainty, and mention four approaches: reactive scheduling, stochastic
optimization, fuzzy project scheduling and robust or proactive scheduling. We focus on
the latter; contrary to reactive scheduling that revises the baseline schedule after an unex-
pected event, proactive scheduling plans robust baseline schedules. This approach origins
from the concept of robust optimization, a relatively recent optimization approach (Ben-
Tal et al., 2009) that aims to construct a solution that is feasible for any realization within
a given uncertainty set. Proactive scheduling develops a robust schedule that anticipates
the variability during project execution. Daniels and Kouvelis (1995) are among the first to
introduce the approach of robust optimization in a scheduling environment. However, they
consider a single-machine where the job’s processing times are uncertain and the objective
is to minimize the total flow time over all jobs. Cohen et al. (2007) apply the robust opti-
mization approach to the stochastic time—cost tradeoff problem and show that the price
of robustness is relatively small when using ellipsoid uncertainty sets. To the best of our
knowledge, there are no papers presenting a robust optimization model for the MRCPSP.
There are two recent papers developing a robust optimization model for the RCPSP. In
the first paper (Artigues et al., 2013), a minimax absolute regret problem is presented
to find a schedule minimizing the maximum absolute regret aver all duration scenarios.
Bruni et al. (2017) develop an adjustable robust optimization problem to find the schedule
that minimizes the worst case makespan over all duration realizations varying through a
polyhedral uncertainty set. A Benders approach is considered and a polynomially solvable
case is identified for a specific uncertainty set. In the present paper, we extend this robust
model to the MRCPSP.

2 Model Description

The project network is modeled through a directed graph defined over the set of nodes
V = 0, ..., n+ 1. The dummy nodes 0 and n+1 represent the start and end of the project,



receptively. The other nodes are non-dummy activities. The set of arcs E represents prece-
dence relations between the activities. We assume K types of renewable resources, with
a finite capacity per period denoted by Rk. Each activity j can be performed in one of
|Mj | modes, where each mode mj ∈Mj is characterized by a duration djm and a resource
requirement of type k, rjmjk. A solution to the MRCPSP is a vector of mode combinations
(m1, ...,mn) and a vector of non negative starting times (S0, ..., Sn+1) which result in a
schedule that satisfies the precedence and resource constraints. Given a mode combination
m = (m1, ...,mn), we define Fm ⊆ V to be any subset of activities without precedence re-
lations between them such that

∑
i∈Fm

rimik > Rk for at least one k ∈ K. This set is called
forbidden since its activities cannot be performed in parallel because of resource conflicts.
We denote Fm as a minimal forbidden set that corresponds to a mode combination m, such
that each of its subsets is not a forbidden set. The MRCPSP solution can be reduced to an
optimal mode combination m and a optimal selection of the set Xm ⊆ (V ×V )\E of extra
precedences such that the extended graphG′(V,E∪Xm) is acyclic and Fm(T (E∪Xm)) = ∅
where T (A) denotes the transitive closure of the set A. We assume that the uncertain data
varies within a so-called uncertainty set. A robust feasible solution guarantees that there are
no violations of constraints for all possible realizations within a considered uncertainty set.
An optimal robust solution is one that solves the robust optimization problem. This new
optimization problem is called the robust counterpart. Tractability of robust counterparts
strongly depends on the uncertainty set’s nature. Ben-Tal et al. (2009) show that a robust
counterpart of an uncertain linear problem is also linear under a polyhedral uncertainty
set. A typical example of a polyhedral set is the case of interval uncertainty, also called a
Box. For a non-polyhedral set, such as the case of ellipsoidal uncertainty, Ben-Tal et al.
(2009) show that a robust counterpart of an uncertain linear problem is quadratic. Since we
formulate our problem with integer variables, we assume that uncertainty sets are polyhe-
dral in order to maintain linear constraints. In our model, uncertain durations are defined
over the polyhedral uncertainty set θ ⊆ Nn×M . For convenience, we denote the subset θm
as the uncertain duration’s support according to a given mode assignment. Indeed, for a
given mode combination m, the corresponding durations vector is dm = (djm1

, ..., djmn
)

which is included in NJ . The set of combination modes is denoted by M ⊆ Nn.
We define the robust multi-mode resource constrained scheduling problem (RMRCPSP) as
a robust optimization problem. The objective is to find a mode assignment and a sufficient
selection that minimizes the worst case makespan under uncertainty:

min
m∈M,Xm∈Xm,S(·)

max
dm∈θm

Sn+1(dm) (1)

S0 = 0 (2)
Sj(dm)− Si(dm) ≥ dimi

,∀(i, j) ∈ E ∪Xm ,∀dm ∈ θm (3)

The mode and selection decisions, m ∈M and Xm ∈ Xm respectively, represent a first-
stage decisions that made before the project’s execution. That is, before activity durations
are known. The second-stage decisions concern the starting times Sj(dm) of each activity
under the duration realization dm ∈ θm. When the uncertainty set is a box, it can be
shown that solving the RMRCPSP is equivalent to solving a deterministic MRCPSP for
the worst-case activity duration vector.

3 Development of an Analytical Solution Approach

The structure of the RMRCPSP encourages us to use a Benders’ solution approach
for solving it (Benders, 1962). Bender’s decomposition algorithm is an iterative algorithm;
at the initial iteration, the lower bound of the objective equals −∞ and its upper bound
equals ∞. At each iteration, we solve a master problem that provides an updated lower
bound and a subproblem that provides an updated upper bound. Once the subproblem



is solved, valid cuts are calculated and added to the master problem formulation. The
algorithm stops when the lower bound converges to the upper bound.

3.1 The Master Problem

The master problem determines mode and sufficient selections, and its objective is
to minimize the lower bound of the worst case makespan. The mode selection decisions
variables are binary and denoted by xjmj

(equals to 1 if activity j is executed under mode
mj ∈Mj). The variables about sufficient selections are modeled by resources flow variables,
fijk, corresponding to the number of resources k units transfered from activity i to activity
j and by binary variables yij , representing all the precedence relations in E∪Xm (including
its transitive closure). In order to improve the computational performance of the master
problem, we incorporate relaxation.

3.2 The Subproblem

After selecting the modes and sequencing activities in the master problem, without the
necessity to consider their durations and the uncertainty set, now, we have to schedule the
activities in the subproblem. The objective is to minimize the worst case makespan when
uncertain durations are defined over a polyhedral uncertainty set. The optimal solution
of the master problem at iteration t determines an acyclic subgraph G′(V,U t) where the
set U t is defined as follows: U t = {(i, j) ∈ V × V : y∗tij = 1}. We accordingly update
Xm∗t , the optimal selections at iteration t, when m∗t = (m∗t1 , ...,m

∗t
n ) denotes the optimal

mode assignment resulted from the master problem at t. Then, a feasible solution for the
RMRCPSP can be determined by solving the following subproblem:

min
S(·)

max
d∈θm∗t

SJ+1(d) (4)

S0 = 0 (5)

Sj(d)− Si(d) ≥ djmj ,∀(i, j) ∈ U t ,∀d ∈ θm∗t (6)

We can rewrite the subproblem as:

max
d∈θm∗t

min
S∈Ω(Xm∗t ,θm∗t )

SJ+1(d) (7)

where: Ω(Xm∗t , θm∗t) = {S ∈ Rn+2
+ : S0 = 0 , Sj − Si ≥ djm∗t

j
,∀(i, j) ∈ U t}, is a set of

activities’ starting times. Using a strong duality result (Beck and Ben-Tal, 2009), we state
that the optimizing under the worst-case makespan in the primal (7), at a generic iteration
t, is equivalent to optimizing under the best case in the dual. The objective function of the
dual problem is non-linear. Then, we focus on the budgeted uncertainty set inspired by
Bertsimas and Sim (2003). The advantage of this polyhedral set is in its flexibility to adjust
the level of conservatism and robustness through the budget Γ , representing the number
of activities which are allowed to deviate from their nominal durations. The parameter Γ
can vary between 0 and n. We assume that each activity duration j performed in mode mj

has a nominal value, d̂jmj
and a maximal deviation denoted by d̃jmj

. Given an optimal
mode combination m∗t = (m∗t1 , ...,m

∗t
n ), the uncertainty set is defined as:

θm∗t = {djm∗t
j
|j ∈ V, djm∗t

j
= d̂jm∗t

j
+ ξj d̃jm∗t

j
, 0 ≤ ξj ≤ 1,

∑
j∈V

ξj ≤ Γ}.

Under this uncertainty set, we can reformulate subproblem (7) as a mixed-integer linear
problem.



3.3 Optimality Cuts

Once the subproblem is solved, two valid cuts are calculated and incorporated to the
master problem.

Proposition 1. Given a finite global lower bound L of the problem (1)-(3), and the optimal
solutions at iteration t, x∗t, y∗t, M∗t, the following constraints are valid optimality cuts.

η ≥ (M∗t − L) ·
∑

(i,j)∈Xm∗t

[1/3 · (yij + xm∗t
i
+ xm∗t

j
)−N · (3− yij − xm∗t

i
− xm∗t

j
)] (8)

− (M∗t − L)(|Xm∗t | − 1) + L ,

when N is a large number.

Proof. It always holds that:∑
(i,j)∈Xm∗t

[1/3 · (yij + xm∗t
i
+ xm∗t

j
)−N · (3− yij − xm∗t

i
− xm∗t

j
)] ≤ |Xm∗t |, with equality

only when x = x∗t and y = y∗t.
In this case, we have that:∑

(i,j)∈Xm∗t
[1/3 · (yij +xm∗t

i
+xm∗t

j
)−N · (3− yij −xm∗t

i
−xm∗t

j
)]− |Xm∗t | = 0 , and then

the right-hand side takes the value M∗t.
Otherwise,

∑
(i,j)∈Xm∗t

[1/3 · (yij + xm∗t
i
+ xm∗t

j
) −N · (3 − yij − xm∗t

i
− xm∗t

j
)] < |Xm∗t |,

and then the right-hand side takes a value less than or equal to L.

Proposition 2. The number of cuts that can be added to the master problem is finite, and
then the procedure is finite.

Proof. Proposition 1 in Laporte and Louveaux (1993). We can apply this result here be-
cause x and y are integer variables.

Summary

This research formulates, for the first time to the best of our knowledge, the robust
MRPCPSP and develops an analytical solution approach.
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1 Introduction

Data gathering networks are widely used in many types of contemporary applications.
Distributed computing introduces the need for collecting the results obtained by remote
workers. Data gathering wireless sensor networks �nd environmental, military, health and
home applications (Akyildiz et al. 2002). Scheduling algorithms for data gathering net-
works were proposed, e.g., by Moges and Robertazzi (2006), Choi and Robertazzi (2008),
Berli«ska (2014) and Berli«ska (2015).

In this work, we analyze gathering data in a network with limited base station memory.
A dataset being received or processed by the base station occupies a block of memory of
given size. The total size of coexisting memory blocks cannot exceed the base station bu�er
capacity. Our goal is to gather and process all data within the minimum possible time.

2 Problem formulation and complexity

We study a data gathering network consisting of m identical worker nodes P1, . . . , Pm

and a single base station. Node Pi has to transfer dataset Di of size αi directly to the base
station. When dataset Di starts being sent, a memory block of size αi is allocated at the
base station. The base station has limited memory of size B ≥ maxmi=1{αi}. The transfer of
dataset Di may start only if the amount of available memory is at least αi. Sending dataset
Di takes time Cαi, where C is the network communication rate (inverse of speed). After
dataset Di is transferred, it has to be processed by the base station. This takes time Aαi,
where A is the base station computation rate. Datasets are processed in the order in which
they were received. As soon as processing a dataset �nishes, the corresponding memory
block is released. It is assumed that both communication and computation on a dataset
are non-preemptive. The base station can communicate with at most one node at a time
and it can process at most one dataset at a time. The scheduling problem is to organize
dataset transfers so that the total data gathering and processing time is minimized.

We prove that the above problem is strongly NP-hard even if A = C = 1, using a
pseudopolynomial reduction from the bin packing problem (Garey and Johnson 1979).

3 Related work

As only one node can communicate with the base station at a time, our data gathering
network can be seen as a two-machine �ow shop, where the communication network is the
�rst machine, and the base station is the second machine. Job i consists of two operations:
sending and processing dataset Di, and requires αi units of base station memory resource.
Thus, we solve a resource-constrained �ow shop scheduling problem (Bªa»ewicz et al. 1983).
It may seem similar to two-machine �ow shop scheduling with limited bu�er storage (see,



e.g., Leisten (1990)), but there are substantial di�erences between them. In a �ow shop
with limited bu�er storage, the bu�er can hold a �xed number of jobs, and a job is stored
in the bu�er when it has already been processed on the �rst machine but not yet started
on the second machine. In our problem, the bu�er can hold a �xed amount of data (for
example, only one big dataset, but up to three small datasets), and the bu�er is occupied
by a dataset not only between, but also during its transfer and processing.

Lin and Huang (2006) proposed a relocation problem with a second working crew for
resource recycling. Each job was executed on two machines in a �ow shop style. The i-th
job required αi units of a resource, and returned βi units of this resource on completion.
The goal was to minimize the makespan while not exceeding the available amount of the
resource. This problem, denoted by F2|rp|Cmax, was shown to be strongly NP-hard, and
heuristic algorithms for solving it were proposed. The problem was further analyzed by
Cheng et al. (2012), who formulated it as an integer linear program. Complexity results
for a number of special cases of the problem were also presented.

Our data gathering scheduling problem is equivalent to yet another special case of
problem F2|rp|Cmax, which can be denoted by F2|rp, pi = Cαi, qi = Aαi, βi = αi|Cmax,
and was not studied in the earlier literature.

4 Algorithms

In our problem, a schedule is determined by the order in which the datasets are transfer-
red to the base station. Each dataset is sent without unnecessary delay, as soon as su�cient
amount of memory is available.

We �rst observe the following symmetry property. Suppose that A = kC, where k ≥ 1,
and Σ is a schedule of length T for given values of B and (αi)

m
i=1. Then, by reversing

schedule Σ, we obtain a schedule of length T for the same values of B and (αi)
m
i=1, com-

munication rate C ′ = kC and computation rate A′ = C. In consequence, we can assume
without loss of generality that A ≥ C.

We propose three �simple� heuristics. Algorithm Inc sorts the datasets in the order of
increasing sizes. Since A ≥ C, this is the order that would be returned by the Johnson's
algorithm for problem F2||Cmax (Johnson 1954), and hence, algorithm Inc delivers opti-
mum solutions if the memory limit B is big enough. Algorithm Alter starts with sending
the smallest dataset, then the greatest one, the second smallest, the second greatest, etc.,
thus alternating big and small datasets. Finally, algorithm Rnd transfers the datasets in
a random order. This algorithm will be used to verify the quality of the results delivered
by the remaining heuristics.

The second group of algorithms are �advanced� heuristics IncLocal, AlterLocal and
RndLocal. Each of them starts with generating a schedule using the corresponding simple
heuristic, and then applies the following local search procedure. For each pair of datasets, we
check if swapping their positions in the current schedule leads to decreasing the makespan.
The swap that results in the shortest schedule is executed, and the search is continued
until no further improvement is possible.

Note that our algorithms cover the three heuristics H1, H2, H3 proposed by Lin and
Huang (2006) for solving problem F2|rp|Cmax. In our special case, both H1 and H2 return
the same results as IncLocal, and H3 is equivalent to RndLocal.

To �nish this section, let us observe that the length of a schedule obtained for an
arbitrary dataset sequence does not exceed (A + C)

∑m
i=1 αi, and A

∑m
i=1 αi is a lower

bound on a schedule length. Thus, the approximation ratio of any algorithm for solving
our problem is at most 1 + C/A. Hence, we can say that our problem becomes easier to
solve when A gets large in comparison to C.



5 Experimental results

In this section, we compare the quality of the solutions and the computational costs
of the proposed heuristics. The algorithms were implemented in C++ and run on an Intel
Core i5-2500K CPU @ 3.30 GHz with 6GB RAM. The test instances were constructed as
follows. The communication rate was C = 1 and the computation rate was A ∈ {1, 2, 5, 10}.
We generated �small� tests with m = 10 and �big� tests with m = 100. The dataset sizes
αi were chosen randomly from the interval [1, 2]. For a given set of αi, we computed the
minimum amount of memory that allows to hold more than one dataset in the bu�er,
Bmin = mini 6=j{αi + αj}. Then, the memory limit was set to B = δBBmin, where δB =
1 + i/10, for i = 1, 2, . . . , 7. For each triple of m, A and δB values, 30 instances were
generated. Due to limited space, we report here only on a small subset of the obtained
results.

The makespans returned by the heuristics for the small tests were compared to the
optimum values computed using the ILP formulation from Cheng et al. (2012). It turns
out that the local search procedure is very e�ective, as for each tested setting, the average
relative errors of all the advanced heuristics were below 0.5%. The average relative errors of
the simple algorithms were between 3% and 20% for the most di�cult tests (with A = 1).

Constructing optimum solutions for instances with m = 100 was not possible because
of the exponential complexity of the exact algorithm. Therefore, the obtained makespans
were compared to the lower bound computed by disregarding the memory limit and solving
problem F2||Cmax for given A and (αi)

m
i=1. The results are summarized in Table 1.

The solutions obtained by the advanced algorithms are much better than those of the
simple algorithms. The di�erences between algorithms IncLocal and AlterLocal are very
small, while RndLocal performs slightly worse. However, it is clear that for δB = 1.2 the
best choice among the simple heuristics is the Inc algorithm, and the results of algorithm
Alter are even worse than those of the random algorithm. For δB = 1.5 we have the reverse
situation: algorithm Alter is the winner, and Inc is even worse than Rnd if A > 1.

Table 1. Average relative distance of the solutions from the lower bound, for m = 100.

A δB Inc Alter Rnd IncLocal AlterLocal RndLocal

1 1.2 0.814 0.974 0.907 0.702 0.711 0.727
1.5 0.557 0.463 0.586 0.216 0.211 0.245

2 1.2 0.411 0.495 0.456 0.340 0.347 0.361
1.5 0.262 0.082 0.231 0.015 0.015 0.039

5 1.2 0.166 0.198 0.183 0.135 0.137 0.143
1.5 0.109 0.047 0.097 0.009 0.010 0.017

10 1.2 0.084 0.099 0.093 0.070 0.072 0.075
1.5 0.055 0.020 0.049 0.005 0.004 0.009

We report on the execution times of the algorithms in Table 2. Here we group the results
for all tested values of A together. The running time of all simple algorithms is very short,
and the advanced algorithms are �ve orders of magnitude slower. The slowest heuristic is
RndLocal, and the relation between IncLocal and AlterLocal depends on δB . For δB = 1.2,
algorithm IncLocal is much faster than AlterLocal, and for δB = 1.5 we have the opposite
situation. Thus, conforming the (initial) dataset sequence to δB value leads to obtaining
better schedules in the case of the simple heuristics, and to shorter execution time in the
case of the advanced heuristics.



Table 2. Average algorithm running time (in seconds), for m = 100.

δB Inc Alter Rnd IncLocal AlterLocal RndLocal

1.2 3.18E−3 2.90E−3 3.33E−3 2.08E+2 3.11E+2 3.89E+2
1.5 2.68E−3 2.58E−3 2.40E−3 3.11E+2 2.06E+2 6.30E+2

6 Conclusions

In this work, we analyzed scheduling data gathering with limited base station memory.
As we showed that this problem is strongly NP-hard, groups of simple and advanced
heuristics were proposed. Their performance was tested in computational experiments.
The simple algorithms are very fast, but the results they obtain are not very good in most
cases. The advanced heuristics produce high quality schedules, but their execution times
are long. We showed that sorting datasets according to their sizes is a good idea if the base
station memory limit is rather small. If the base station bu�er is big enough to hold the
smallest and the biggest dataset together, then alternating small and big datasets allows
to obtain better results.
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1 Introduction

A project network is a directed graph G = (V, A), where the set of nodes V corresponds
to the set of activities of the project, and the set A of its arcs represents the set of (classical)
finish-to-start precedence relations among pairs of activities, i.e., A = {(i, j) : i, j ∈ V }.
The graph G is acyclic and models the project in the so called Activity-On-Node (AON)
representation; nodes can be topologically numbered assuming a single source dummy node
(activity 1) and a single sink dummy node (activity n). Each activity i ∈ V \{1, n} has a
duration di. No resource constraint is taken into account.

The problem of computing the minimum value of the project completion time (project
duration or makespan), under the assumption that di’s are deterministic values, is known to
be polynomially solvable. If activities’ durations are uncertain and are modeled by random
variables, the project network becomes stochastic and the objective changes in determining
the project makespan distribution or some characteristic thereof, e.g., its expectation.

In the literature, stochastic project networks are often referred to as PERT-networks,
since PERT (Project Evaluation and Review Technique) was one of the first techniques to
analyze the stochastic behavior of such networks (see, e.g., Clark, 1962). The originators of
PERT proposed to use three estimates for the duration of each activity i, i.e., an optimistic
value āi, a most likely value m̄i, and a pessimistic estimate b̄i. They modeled each activity
duration as a stochastic variable with an appropriate Beta distribution and proposed a
simple approximate method to calculate its expectation. The assumption of a Beta density
function was a matter of convenience that allowed the derivation of nice approximations for
the expected value and the variance of activity durations, but, in practice, these estimates
may be far form the actual expected value and variance of a Beta distributed stochastic
variable. Besides this, PERT model suffers from several other shortcomings: it assumes that
activity durations are independent stochastic variables; it uses the Central Limit theorem
assuming the number of critical activities being large enough; moreover, it suffers from the
merge event bias problem leading PERT to an optimistically biased estimate of the earliest
expected activity starting times, and then also of the project duration.

In this paper we try to cope with uncertainty in activity durations in a novel way
in order to overcome PERT limitations. In Section 2, we present our approach, while in
Section 3 we compare the latter to the PERT model.

2 The Proposed Chance Constrained Optimization Approach

In the following, we present a new approach where activity durations uncertainty is not
modeled by means of stochastic variables directly associated with activity durations, as
done in most of the stochastic approaches in the literature. We assume that the planning
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horizon is [0, T ) (all the activities have to be completed within T ), discretized into T unit
time periods [0, 1), [1, 2), . . . , [T − 1, T ), indexed by t = 1, 2, . . . , T . Moreover, for each
(non-dummy) activity i ∈ V \{1, n} and for each time period t, we introduce the execution
intensity xit as a stochastic variable, with 0 ≤ xit ≤ 1, representing the fraction of activity
i executed in time period t. This means that activity i is completely executed when the sum
of the variables xit over time is equal to one. Typically, in classical project scheduling, one
assumes that the amount of activity carried out during its execution is flat, i.e., xit = 1

di
.

Let si be a non-negative variable defining the start time of activity i ∈ V . Moreover, let
∆i be an integer non-negative variable representing the number of time periods necessary
to complete activity i with a probability at least equal to θ.

Since the project makespan can be expressed as sn, where n is the dummy sink activity
of the project network, the problem of minimizing the makespan of our stochastic project
network has the following conceptual mathematical program

min sn (1)

Prob

{
si+∆i∑
t=si+1

xit − 1 ≥ 0

}
≥ θ, ∀i ∈ V (2)

si + ∆i ≤ sj , ∀(i, j) ∈ A (3)
si ≥ 0, ∀i ∈ V (4)

∆i ≥ 0 and integer, ∀i ∈ V \{1, n}. (5)

The objective function (1) minimizes the start time of the dummy end activity n and
thus the makespan of the project. The constraints have the following meaning: Constraints
(2) regulate the total amount processed of an activity i ∈ V over time, i.e., the probability
that the summation of the execution fractions of i after ∆i unit time periods from the
start time of i is greater than or equal to 1 must not be less than θ. Constraints (3) model
finish-to-start precedence relations between i and j, ∀(i, j) ∈ A. Constraints (4) and (5)
limit the range of variability of the problem variables.

The above model can be interpreted in terms of Chance constrained programming (see,
e.g., Prekopa, 1995) that is one of the main approaches for dealing with stochastic opti-
mization problems. The latter has the following form

min
y∈Y

f(y), s.t. Prob{G(y, ξ) ≥ 0} ≥ θ, (6)

where Y ⊆ Rr, ξ is a random vector with probability distribution P supported on a set
χ ⊆ Rq, f : Rr → R is a real valued function, and G(y, ξ) ≥ 0, with G : Rr × χ → Rs,
refers to a finite system of inequalities. θ ∈ (0, 1) is called the probability level and it is
chosen by the decision maker in order to model the safety requirements. Sometimes, the
probability level is strictly fixed from the very beginning (e.g., θ = 0.95, . . . , 0.99). Next
we first show how to cope with constraints (2) in order to write the chance constrained
program (1)–(5) as a deterministic (linear) program and then solving the latter.

2.1 Phase 1: Estimating ∆i to cope with constraints (2)

Assume that the durations of the activities are sufficiently large, and consider a generic
(non-dummy) activity i ∈ V \{1, n}. Assuming the stochastic variables xit being inde-
pendent and identically distributed, by the Central Limit theorem we can state that
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X̄i =
∑si+∆i

t=si+1 xit is a Normal stochastic variable. That is, X̄i is such that the (standard-

ized) stochastic variable Zi =
X̄i
∆i

−µi

σi

√
∆i ∼ N(0, 1), where N is the Normal distribution,

and µi and σi are the mean value and the standard deviation of xit, respectively.
In the following, we show how to calculate the minimum ∆i such that Prob{X̄i ≥

1} ≥ θ, i.e., such that activity i being completed with probability at least equal to

θ. The latter can be written as Prob

{
Zi ≥

1
∆i

−µi

σi

√
∆i

}
≥ θ, which means that θ ≤

Prob

{
Zi ≥

1
∆i

−µi

σi

√
∆i

}
= Φ

(
−

1
∆i

−µi

σi

√
∆i

)
where we exploited the fact that the Nor-

mal probability density function is an even function and Φ is the quartile of the Normal
distribution which is the inverse of the repartition function in the case of absolutely con-
tinuous density function, and, therefore Φ−1(θ) ≤ −

1
∆i

−µi

σi

√
∆i. This inequality can be

rewritten as ∆iµi − Φ−1(θ)σi

√
∆i − 1 ≥ 0, and by solving it in

√
∆i, considering the latter

being non-negative, we have that

√
∆i ≥

Φ−1(θ)σi +
√

[Φ−1(θ)]2σ2
i + 4µi

2µi
=

√
[Φ−1(θ)]2σ2

i

4µ2
i

+

√
[Φ−1(θ)]2σ2

i

4µ2
i

+ 1
µi

. (7)

Assume now that for each (non-dummy) activity i and for all t = si + 1, . . . , si +
∆i, the stochastic variables xit in [0, 1], are identically distributed with a Beta (prior)
probability density function with parameters αi, βi > 1. Let us therefore consider the
additional parameters ai = 0, bi = 1, and mi = αi−1

αi+βi−2 . Parameter ai identifies the
pessimistic value of stochastic variable xit, i.e., an estimate of the minimum fraction of
activity i that can be executed in time period t, while parameter bi identifies its optimistic
value, i.e., an estimate of the maximum fraction of activity i that can be executed in time
period t, and finally parameter mi identifies the most likely value or modal value of xit.
Accordingly, we have that µi = αi

αi+βi
and σ2

i = αiβi

(αi+βi)2(αi+βi+1) .
After some easy calculations and substitutions, equation (7) can be written as,

∆i ≥

√
[Φ−1(θ)]2

4
(αi − 1)/mi − αi + 2
αi((αi − 1)/mi + 3)

+

√
[Φ−1(θ)]2

4
(αi − 1)/mi − αi + 2
αi((αi − 1)/mi + 3)

+ (αi − 1)/mi + 2
αi

2

. (8)

Choosing the minimum integer value of ∆i fulfilling inequality (8) guaranties that
activity i will be completed in ∆i time periods with probability not less than θ.

2.2 Phase 2: Solving the resulting deterministic problem

With the above choice for ∆i, for each activity i, constraints (2) are satisfied and hence
it can be removed, along with constraints (5), from the chance constrained program (1)–(5).
The latter therefore reduces to the well known natural-date (linear) problem formulation of
the (deterministic) resource unconstrained project scheduling problem, with finish-to-start
precedence relations and where ∆i assumes the role of the duration of activity i, that can
be solved in linear time with respect the number of precedence relations.

The optimal solution value of the latter program provides the (minimum) project du-
ration assuring that the project itself is completed with probability not less than p = θℓ ≥
θn−2, where ℓ, with 1 ≤ ℓ ≤ n − 2, is the number of non-dummy activities of the largest
activity chain of the project network. Since typically θ is assumed to be very close to 1, i.e.
θ = 1 − ϵ with ϵ > 0 being a value sufficiently close to 0, we have that p = (1 − ϵ)ℓ ≃ 1 − ℓϵ,
hence the project will be completed with probability not less than 1 − ℓϵ.
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Fig. 1. Example of project network data in the proposed model (a) and in the PERT model (b).

3 Example

In the following example we compare our approach with PERT. In particular we are
interested in comparing the project duration estimated by our approach with that provided
by the PERT, given the probability p of project completion. The comparison is done by
considering, for each non-dummy activity i, the optimistic estimation āi and the pessimistic
estimation b̄i of the duration di equal to the value of ∆i calculated with the approach
described in Section 2.1 with θa = 0.01 and with θb = 0.99, respectively. Finally, given
āi and b̄i and the modal value mi of xit, we calculate the modal value m̄i of di as m̄i =
āi + mi(b̄i − āi). In Figure 1 we depict a project network with (a) the input data for our
model and (b) the corresponding input data for the PERT model evaluated as described
above; nodes 1 and 6 are dummies. By computing the values of ∆i with θ = 0.99 for
every activity i, with i = 2, . . . , 5, we have ∆2 = ⌈3.43⌉, ∆3 = ⌈2.43⌉, ∆4 = ⌈3.16⌉, and
∆5 = ⌈3.16⌉. By solving the deterministic model of Phase 2 with these data we have that
the project duration is 12 with a probability (approximately) equal to 0.97. As for the
PERT model (see part b of Figure 1), we have that the project duration, with the same
probability of 0.97, is 7.79 + 1.88 · 0.81 = 9.31, since its mean value is 7.79 an its standard
deviation is 0.81 (1.88 is the number of standard deviations to be added to the mean
value to get a project duration estimation with probability equal to 0.97). Hence, for this
example, PERT underestimates project duration by more than 22.4% with respect to our
approach. We will also compare the project duration given by our approach and by PERT
with that calculated with Monte Carlo simulation on test problems with different sizes.
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1 Introduction

The standard Capacitated Single-machine Lot-sizing Problem (CSLP) assumes that the
planning horizon is divided into a number of time periods of equal lengths and makes three
implicit and simplifying assumptions. First, it implicitly assumes that a lot that starts
within a given time period should be finished within this same period. This assumption
is needed to simplify the mathematical expression of the capacity constraints. Second, it
assumes that setups cannot be carried over from one period to the next. Thus if the last
run of a period and the first of the next one process the same product, a setup cost for
each of these two runs are included in the cost function. This overestimates the overall
setup cost as, in most cases, these two lots can be processed with one setup (see Jans et al.
2008). Third, it is assumed that delivery occurs only at the end (or the beginning) of each
time period. However, the objective function does not include the inventory holding cost
between the time a lot is finished and the beginning of the next period. This assumption is
also needed to simplify the mathematical expression of the objective function and to make
the determination of processing dates unnecessary. However this underestimates the real
inventory holding cost.

Some research publications (see Sox et al., 1999; Gopalakrishnan, 2000; Suerie et al.,
2003; Porkka et al., 2003) propose to relax the second assumption and allow setup carryover.
However the resulting formulation still: (1) does not include the inventory holding cost
between the time a lot is finished and the beginning of the next period; (2) does not allow
a lot to be finished beyond the end of its starting period; and (3) does not allow delivery
between the beginning and the end of a time period.

A more realistic version of the problem, called hereafter the single-machine capacitated
lot-sizing and scheduling problem with delivery dates and quantities (SCLSP-DDQ), is stud-
ied in this paper. To the best of my knowledge, this problem is not studied in any previous
publication. In this version each product has a set of delivery dates and the quantity to
deliver at each of these dates is known. It is allowed to start the production of a lot at any
time and finish it at any time later within the finite planning horizon provided that the
required demands are delivered at the required dates. Also it allows setups to be carried
over from one period to the next. Finally, the objective function of this new formulation
includes the inventory holding cost of each produced lot from the end of its processing until
the delivery of all its units.

Arranging delivery dates in their ascending order, denoted, t1, t2, . . . , tL, we consider
that the planning horizon is divided into L time intervals of unequal lengths, where the
length of interval l is the time interval between tl−1 and tl. We also allow a lot that starts
within a given time interval, say interval l, be finished within the same interval or within
a later interval, say interval l + r.
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2 Mathematical formulation

As mentioned above, the proposed formulation allows for setup carryover, takes into
account the inventory holding cost for each produced lot between the finish time and the
delivery of all its units. Also, it determines the sequence and processing dates of all lots to
process.

2.1 Assumptions:

1. A number of products are to be produced by a single machine (or a production line);
2. Each lot of each product is composed of a number of units of the product;
3. A finite planning horizon and the machine cannot processes more than one product at

a time;
4. For each product there is an upper limit on its lots size;
5. Lots of the same product are not necessarily of same size;
6. Processing time of a lot of a given product is composed of the processing time of its

units plus a known sequence-independent setup time;
7. Processing time of a lot of a given product can be either proportional to the quantity

to produce or constant (e.g. in chemical industries). Both cases are modeled in Boctor
(2016); however this paper model the constant processing time case only;

8. Delivery dates and quantities to deliver at these dates are known and deterministic;
9. No backlogging is allowed;

10. Two cost elements are considered: setup cost and inventory holding cost;
11. For each product, unit inventory holding cost per time unit and setup cost are constant.

2.2 Notation:

N number of different products to produce; indexed i
T set of delivery dates indexed in the ascending order; T = {tl; l = 1, . . . , L}

dil quantity of product i to deliver at tl. This demand is nil if it is not required to deliver
any quantity of product i at tl

Pi processing time of a lot of product i including its setup time
ci setup cost of a lot of product i
hi inventory holding cost of a unit of product i per time unit
Qi upper limit on the size of a lot of product i
Fi the required inventory level of product i at the end of the planning horizon

xipl a binary that takes the value 1 if a lot of product i is in position p among those to
finish between tl−1 and tl (even if it starts before tl−1). Notice that, as we have an
upper limit Qi on the lot size of i, more than one lot of product i may be processed
and finished between tl−1 and tl but in different positions in the sequence

qipl the quantity of product i if produced in the p-th position and finishes between tl−1 and
tl

fipl the finish date of product i if produced in the p-th position and finishes between tl−1
and tl

Iil inventory level of product i at tl just after delivering the demand dil

2.3 The SCLSP-DDQ Model

Find xipl ∈ {0, 1}, qipl ≥ 0, fipl ≥ 0, and Iil ≥ 0; i = 1, . . . , N ; p = 1, . . . , N ; l =
1, . . . , L, which:
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Minimize :
N∑

i=1

L∑
l=1

hiIi,l−1(tl − tl−1) +
N∑

i=1

N∑
p=1

L∑
l=1

hiqipl(tl − fipl) +
N∑

i=1

N∑
p=1

L∑
l=1

cixipl (1)

Subject to:
N∑

i=1
xipl ≤ 1, p = 1, . . . , N, l = 1, . . . , L (2)

N∑
i=1

xipl ≤
N∑

i=1
xi,p−1,l, p = 2, . . . , N, l = 1, . . . , L (3)

qipl ≤ xiplQi, i = 1, . . . , N, p = 1, . . . , N, l = 1, . . . , L (4)

Iil = Ii,l−1 +
N∑

p=1
qipl − dil, i = 1, . . . , N, l = 1, . . . , L − 1 (5)

Ii,L−1 +
N∑

p=1
qipL − diL = Fi, i = 1, . . . , N (6)

fi11 ≥ xi11Pi, i = 1, . . . , N (7)
fi1l ≥ xi1ltl−1, i = 1, . . . , N, l = 2, . . . , L (8)

fipl ≥ xiplfj,p−1,l + Pixiplqipl, i = 1, . . . , N, j = 1, . . . , N, p = 2, . . . , N, l = 1, . . . , L(9)
N∑

i=1

N∑
p=2

Pixipj ≤ tl −
N∑

i=1
xi1lxi1l, l = 1, . . . , L. (10)

The first term in the objective function (1) gives the inventory holding cost of items
over the time intervals tl−1 and tl. The second term gives the inventory holding cost of the
produced items between the end of their processing and the following delivery date. The
third term gives the setup cost of the processed lots. Constraints (2) require that there
is at most one product in each position of each time interval (i.e., the interval between
two consecutive delivery dates). Constraints (3) make sure that if there is no product in a
position then there are no products in the next position. Constraints (4) make sure that
the produced quantities do not exceed the lot-size upper limit. Constraints (5) and (6)
determine the inventory levels and assure that the demands are fulfilled without backlogs.
Constraints (7), (8) and (9) determines the finish times of the lots to produce. Finally,
constraints (10) make sure that we have enough time to produce the required quantities in
each time interval (capacity constraints).

This model is difficult to solve as it contains a large number of variables and constraints.
It is composed of N2L binary variables, NL(2N +1)+L continuous variables and NL(2N +
1) + L constraints. Thus if we have 10 products and 20 delivery dates our model has 2000
binary variables, 4220 continuous variables and 4220 constraints. It is also important to
note that the objective functions (1) as well as constraints (9) and (10) are quadratic which
adds to the difficulty of solving the model. Actually, we were not able to solve this model
even for instance including 10 products and 8 delivery dates.

A necessary and sufficient condition for the feasibility of this model is:

N∑
i=1

(
Pi

⌈∑l
j=1 dil

Qi

⌉)
≤ tl, l = 1, . . . , L (11)
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3 A decomposition solution approach

A first approach to solve the above introduced problem consists of decomposing the
problem into two sub-problems to be solved consecutively. The first sub-problem is the
one of determining the product lots to be processed before each delivery date without
determining their sequence of production (i.e., without specifying their position p). The
second sub-problem is to determine the sequence for the obtained production lots.

The first sub-problem can be formulated as mixed integer linear program (see Boctor,
2016). The optimal solution of this model gives us the number of lots of each product to
be finished by each date tl. Once this optimal solution is obtained we solve a sequencing
problem to determine the starting dates of the required production lots. This second sub-
problem is also modeled by a mixed integer program. Unfortunately, solving this second
model is very time consuming and has a weak LP relaxation. For more details see Boctor
(2016).

4 A hybrid heuristic

This proposed heuristic is a hybrid one composed of a solution construction procedure
followed by 3 improvement procedures. The construction phase is an iterative, backward-
pass heuristic. To construct a production plan, the heuristic starts by setting t = tL, the
latest delivery date. The main iteration of the heuristic is as follows. At each date t we
list the products to deliver at this date and chose from this list the product k that has the
largest value of hkqk

where qk = min{dkt, Qk}. Then we schedule the processing of a lot
of size qk of the product k to finish at t. If qk = dkt we remove product k from our list
otherwise we reduce its demand by qk. Next, we set t = t − Pk. In other words we put t
equal the starting time of the just scheduled job k, and add to the list all the orders for
which the due date is between t and t + Pk if any. If the resulting list contains more than
one order for a given product, we group them into one order. Now, if the list is not empty,
repeat the above and choose a job to schedule. Otherwise, move backward to the latest
date where we have some orders to deliver. The heuristic stops when there are no more
orders to schedule.

The rational of this construction heuristic is to schedule the production of the orders to
deliver at the latest possible time in order to minimize the sum of inventory holding costs.

This procedure may produce a non-feasible schedule where the starting time of some
jobs is before the beginning of the planning horizon (date 0). Even in such a case we apply
the improvement procedures as they may modify this solution in a way that makes it
feasible.

The first improvement procedure attempts to reduce the number of production lots in
order to reduce the number of setups. The procedure considers one product at a time and
repeat the following until no more gain can be achieved. For each lot of the considered
product, determine if a gain can be made by removing this lot and adding its units to the
preceding lots of the same product. The lot leading to the highest gain is removed and we
repeat the same for the remaining lots. This improvement procedure stops if we cannot
achieve any more gain.

The second improvement procedure attempts to move the remaining production lots to
the latest possible date without causing any backlogs. This may be possible as the previous
improvement procedure may remove some production lots making room for processing
other lots in the time interval originally occupied by some of the removed lots.

The third improvement procedure exchanges the position of pairs of production lots as
long as this can lead to cost reduction without backlogs.
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5 Computational experiment

To assess its performance, the solutions of the hybrid heuristic were compared to those
obtained by the decomposition approach using 100 randomly generated problem instances.
Unfortunately, it is not possible to obtain the optimal solutions of these instances. In
addition the literature does not provide any solution method that can be used to assess
the performance of the proposed heuristics.

For all the generated instances, the number of products is 10 and the number of delivery
dates is 8. Delivery dates are: 40, 60, 80, 100, 120, 150, 180 and 200. For each instance,
the values of hi, ci, Pi and Qi are randomly drawn from uniform distributions. The limits
for these uniform distributions are respectively from 0.05 to 0.25 for hi, from 80 to 200
for ci, from 1 to 5 for Pi, and from 40 to 80 for Qi. To determine the total demand of a
product, a random value is drawn from a uniform distribution between 120 and 180. For
each product, one to four delivery dates are randomly drawn among the 8 possible dates.
The total demand is then partitioned and a quantity is randomly determined for each
delivery date. Note that all test instances are generated in a way to satisfy the necessary
and sufficient feasibility condition (11).

The proposed hybrid heuristic succeeded to solve all test instances with an average
time of less than 1 second. The 3 improvement procedures reduce the total cost obtained
at the construction step by 8.01% in average with a minimum improvement of 2.12% and
a maximum improvement of 16.76%. In more details, the first improvement procedure, the
grouping procedure, produced an improvement of 4.42% in average while the second and
third improvement procedures yielded 1.05% and 2.73% improvement in average. The hy-
brid heuristic produced a better solution than the decomposition approach for 75 instances
while the decomposition approach produced a better solution for the other 25 instances.
Over the entire 100 instances set, in average, the hybrid heuristic produced solutions with
a total cost of 3.38% less than the decomposition approach.
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1 Single machine scheduling with m:n job-order relations

In this paper we treat an elementary extension of single machine scheduling problem
1||

∑
Cj where m:n relations among jobs and orders exist. This problem, which we dub

1|m:n|
∑
Co, is de�ned as follows:

We have a set of jobs J = {1, . . . , n} with processing times pj and a single machine to
successively process these jobs. Furthermore, we have a set O = {1, . . . ,m} of customer
orders. Completing an order o ∈ O requires the completion of job subset Jo ⊆ J . Job sets
Jo are not disjunct, so that we have a m:n relation among jobs and orders. A solution can
be encoded by a sequence φ, i.e., a permutation of jobs j = 1, . . . , n, with φ(k) returning
the job at sequence position k = 1, . . . , n. Let κ(φ, o) = max{k = 1, . . . , n : φ(k) ∈ Jo} be
the sequence position of the last job required for completing order o. Among all sequences
φ, problem 1|m:n|

∑
Co seeks a job sequence which minimizes the sum of order completion

times, i.e.,

Z(φ) =
∑
o∈O

κ(φ,o)∑
k=1

pφ(k).

Other than in our problem setting, traditional problem 1||
∑
Cj presupposes a 1:1

relation among jobs and orders and is well known to be solvable in polynomial time by
ordering jobs according to the shortest-processing-times rule (Smith 1956). In this paper,
we show that this result no longer holds for 1|m:n|

∑
Co, which is shown to be strongly

NP-hard in Section 2. Section 3 elaborates on the application of 1|m:n|
∑
Co in distribution

centers of large online retailers, e.g., Amazon and Zalando. Here, bins (jobs) containing
multiple items for di�erent orders need to be manually sorted into a rack (dubbed the put
wall) by a human logistics worker (machine), such that human packers on the other side
of the put wall receive customer orders quickly and do not run idle while stowing orders
into cardboard boxes.

2 Computational complexity

In this section, we investigate the complexity status of 1|m:n|
∑
Co and reiterate the

complexity proof initially presented by Boysen et. al. (2018). The transformation is from
the linear arrangement problem (LAP), which is well-known to be NP-complete in the
strong sense, see Garey and Johnson (1979).

LAP: Given a graph G = (V,E) and a positive integer K. Is there a one-to-one-function
ϑ : V → {1, 2, . . . , |V |}, i.e., a numbering of nodes V with integer values from 1 to |V |,
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such that
∑

(u,v)∈E |ϑ(u)− ϑ(v)| ≤ K?

Theorem: 1|m:n|
∑
Co is strongly NP-hard even if all jobs have unit processing time.

Proof: Within our transformation of LAP to 1|m:n|
∑
Co we introduce a job for each

node, so that n = |V |. The integer value ϑ(u) assigned to a node u within LAP corresponds
to the sequence position φ−1(i) assigned to job i within 1|m:n|

∑
Co. Given the maximum

degree δ(G) = maxu∈V {|{v ∈ V : (u, v) ∈ E}|} of the LAP graph, we introduce δ(G) orders
for each node u ∈ V : First, an order {u, v} is generated for each adjacent node v, so that
for each edge (u, v) ∈ E two orders {u, v} and {v, u} are generated. Then, for each node
having a degree less than δ(G) we extend the order set by additional single-job-orders {u}
until δ(G) orders per node are generated. In total, δ(G) · |V | single- and two-job-orders are
introduced. The question we ask is whether we can �nd a solution for 1|m:n|

∑
Co with

objective value

Z = δ(G) · |V | · (|V |+ 1)

2
+K.

Obviously, this transformation can be done in polynomial time. The δ(G) orders asso-
ciated with each job u are either single-job-orders, which have completion time φ−1(u), or
two-job-orders. Each order {u, v} of the latter kind always exists twice, because in the name
of each edge (u, v) two identical orders are introduced, i.e., one when generating the δ(G)
orders for node u and the other when generating orders for v. The unit processing times
allow us to measure completion time in sequence positions of the job sequence. The sum of
completion times for both of these orders is, thus, twice the sequence position of the later
of both jobs u and v. If φ−1(u) < φ−1(v), this amounts to 2φ−1(v). Due to the inequality
of φ−1(u) and φ−1(v), we can rearrange 2φ−1(v) to φ−1(v)+φ−1(u)+(φ−1(v)−φ−1(u)). If
we assign the former two time spans φ−1(v) and φ−1(u) to jobs v and u, respectively, then
it becomes obvious that to each sequence position i = 1, . . . , n exactly δ(G) time spans are
assigned. Thus, we have an inevitable amount of completion time, i.e., independent of the
sequence positions of jobs, of

δ(G) ·
∑
u∈V

φ−1(u) = δ(G) ·
|V |∑
i=1

i = δ(G) · |V | · (|V |+ 1)

2
.

The remaining time spans φ−1(v) − φ−1(u) within 1|m:n|
∑
Co, which are dependent

of the sequence positions of jobs, exactly equal the di�erence in the node numbers assigned
to each edge within LAP, so that both problems are directly transferable from each other
and the theorem holds. �

3 Application in the warehouses of online retailers

Online retailers like Amazon Europe and Zalando, typically, structure their order ful-
�lment process into three basic steps:

� Picking: First, the items demanded by customer orders need to be retrieved from the
shelves of a warehouse. Most online retailers apply a picker-to-parts order picking in
a batching and zoning environment where, additionally, a mixed-shelves policy (also
denoted as scattered storage (Weidinger and Boysen 2018)) is applied. Under this policy
unit loads of stock keeping units (SKUs) are purposefully broken down and single items
are scattered all over the shelves of a warehouse. In this way, there is always some item
of a demanded SKU close by irrespective of the current picker location. In such a
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setting, large online retailers apply dozens of pickers, which are typically assigned to
speci�c zones of the warehouse. They pick batched orders in parallel into bins each
�nally containing partial orders for multiple customers.

� Intermediate storage: Completed bins are handed over to the central conveyor system
where they are stored until all bins belonging to the same batch have arrived from
their zones. Once a batch is complete, the respective bins are released from storage
and conveyed toward the consolidation area.

� Order consolidation: The bins of a batch successively arrive at a conveyor segment of
the consolidation area. Here, a logistics worker we call the putter resides. The putter
successively removes the items from the current bin and puts them into the put wall.
The put wall is a simple reach-trough rack separated into multiple shelves, which are
accessible from both sides. Each shelf is temporarily assigned to a separate order and
once the putter scans the current item a put-to-light mechanism indicates into which
shelf the current item is to be put. In this way, bin after bin is sorted into the wall.
On the other side of the wall reside the packers. Here, another put-to-light mechanism
indicates completed orders, so that a packer can empty an indicated shelf and pack
the respective items into a cardboard box. Packed orders are, �nally, handed over to
another conveyor system bringing them towards the shipping area.

Our problem 1|m:n|
∑
Co can directly be applied to determine the sequence of bins,

in which a batch is released from intermediate storage. Jobs equal bins and the processing
sequence of jobs on the single machine corresponds to the release sequence of the batch
from intermediate storage, which is also the sequence in which bins are sorted into the put
wall. The processing times pj depend on the number of items contained in each bin j. By
minimizing the sum of completion times orders are quickly sorted into the put wall by the
putter, so that the packers on the other side of the wall receive orders sooner and idle times
are avoided. With the help of a comprehensive simulation study Boysen et. al. (2018) show
that optimized bin sequences considerably reduce the packers' idle times.

Future research should consider our single machine scheduling problem with m:n job-
order relations for other objectives. There may be other cases where the traditional sche-
duling problem, i.e., with a 1:1 relation among jobs and orders, is solvable in polynomial
time, whereas the corresponding problem with m:n job-order relations turns out NP-hard.
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1 Introduction

The 21st century is marked by the fourth industrial revolution, which embraces many
technologies and concepts. Among them, robotization is often viewed as the most promising
avenues of progress in the field of automated production. Indeed the use of more and more
sophisticated machines and robots is able to bring improvements in production costs, rates,
quality and operators safety.

Among the various types of robots frequently used in production systems are the han-
dling robots, which basically pick parts somewhere in the shop and place them elsewhere.
More specifically, this study focuses on automated packaging systems involving several
handling robots. A packaging system is generally composed of two conveyor belts convey-
ing products and boxes, respectively. A handling robot picks one or several products on
the former conveyor and places them in a box on the latter. The conveyor belts may have
several possible shapes: parallel, perpendicular or circular. The parallel one is the most
common and product and box flows can go in the same or opposite direction, as illustrated
in Figure 1 (taken from (Blanco Rendon 2013)). A pick/place task can only be carried out
by one robot when the corresponding product/box is present inside the working area of
this robot. The normal speed of each conveyor being assumed known, a time window can
be associated with each robot task. Moreover, the pick/place task duration can vary and
depends either on the product or the robot.

	

Fig. 1. Conveyor belts configurations
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The problem considered in this paper, further referred to as the Multi-robot-Pick-and-
Place Scheduling Problem (MPPSP), consists in i) assigning products and boxes to robots
and ii) defining a consistent starting time for each pick/place task, so that the filling rate
is maximized (or equivalently, the number of filled boxes over a given time horizon is
maximized). In the case of a pick-task, the starting-time consistency only requires that the
task is performed by the robot during its time execution window (i.e., when the product
is present inside the robot workspace). In the case of a place-task, the previous condition
should obviously hold and, additionally, there are flow constraints: if k products should
be placed inside each box in a one-shot operation, one has to ensure that k pick tasks
have been achieved before the place task can be carried out. Finally, note that in the case
the conveyor speed can be controlled (which is assumed impossible in the present study),
the filling rate can be further improved, which gives rise to a third MPPSP dimension
consisting in the determination of the optimal conveyor speed profiles.

In many existing systems, a vision system is integrated in front of the conveyor entries to
locate the various parts, which allows predicting the working-area entry or exit events a few
seconds before their occurrence. Moreover, in the context of the industry 4.0, all information
about production and packaging processes may be known in advance so that execution
windows of pick/place tasks could be either predicted earlier. Under the assumption of
predictability of the product/box flows, the MPPSP is studied in its offline version in this
paper and a compact Mixed-Integer Linear Programming (MILP) formulation is proposed.

The paper is structured as follows. First, a brief literature overview is made that par-
ticularly put into evidence some relationships between MPPSP and some other well-known
problems of the scheduling literature. Then, our MILP formulation is established that takes
benefits from specific dominance rules, which allows characterizing all the dominant solu-
tions on a robot within a single master-sequence. Some conclusions are drawn in the last
section.

2 Literature overview

A vast majority of the paper of the literature tackles the online version of the problem,
taking interest in designing efficient rules or cooperation mechanisms between robots that
maximize the filling rate, while balancing the working load between robots, e.g., (Blanco
Rendon 2013, Bouchrit 2016, Huang et al. 2015, Humbert et al. 2015). In the OR literature,
Daoud et al. (2014) took interest in designing pick-and-place robotic systems and propose
fast metaheuristics to determine the best schedule rule to be applied to each robot.

For the offline version of MPPSP, the literature is scarcer. In (A. Bouchrit 2016), a
network-based MILP formulation is proposed to solve the offline MPPSP in the case of
a homogeneous product/box flow (each product/box is separated from the next one on
the conveyor by a constant distance). Products are considered as nodes within a network
and the problem amounts to find for each robot the best path to collect the maximum
possible number of products, which gives a pick-and-place task sequence. Many constraints
are taken into account such as conveyor belt velocities, robot load balance, time windows
and flow constraints. Nevertheless, the implementation of this formulation on commercial
solver does not provide satisfying performances as finding optimal solution turns out to be
too time-demanding.

In the scheduling literature, MPPSP is sharing some similarities with the parallel ma-
chine problem with time windows that aims at minimizing the number of tardy jobs,
(denoted as P |rj |

∑
Uj in (Pinedo 2008)). This problem is known to be NP-Hard in the

strong sense even for one single machine. Nevertheless, still under the assumption of a
single machine environment, it is polynomially solvable when execution windows have a
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staircase structure. As a specific feature of MPPSP, we observe that there are several pos-
sible time windows for the execution of a task (depending on the robot implementing it),
which tends to indicate that MPPSP is also related to the Runway Scheduling Problem
(RSP) (Artiouchine et. al. 2008) that consists in sequencing aircraft landing. Note that
RSP is also NP-hard.

3 MILP formulation

This chapter takes an interest in finding a job sequence that maximizes the number of
filled boxes assuming the product and box flows predictable. We consider three sets B, P
and R of B boxes, P products and R robots, respectively. In the notations used below,
index b (p and r, respectively) refers to a box b ∈ B (a product p ∈ P and a robot r ∈ R,
respectively). The pick and place processing times are denoted Dpr and Dbr, which depend
on robot r. We refer to [Spr, Fpr] and [Sbr, Fbr] as the execution windows of product p (box
b, respectively) on robot r.

In the remainder of this paper, as the conveyor speed is assumed constant, we set
Fpr − Spr = ∆pr, ∀(p, r) ∈ P × R (Fbr − Sbr = ∆br, ∀(b, r) ∈ B × R, resp.). Moreover,
without loss of generality, we assume that ∆pr > ∆br (products stay longer in the robot
working area than boxes) but, as explained below, it could be the reverse.

Once an assignment of products and boxes to robots is decided (note that a product/box
can possibly not be assigned), the problem left is to find a pick-and-place sequence on each
robot that i) is time feasible and ii) respects the constraint that k picks should always
precede any place operation. For ensuring time feasibility, following the idea proposed by
Briand and Ourari (2013), a master sequence can be considered that characterizes a set
of dominant sequences. This master sequence uses the notion of a top-job, i.e. a job such
that its execution window does not (strictly) include the execution window of any other
job. In our case, as there are only two kinds of time intervals (the pick and place ones) and
because ∆pr > ∆br , any place operation is a top job. Therefore, a master sequence Θr
having the form below can be defined for each robot r.

Θr = σ−1r 1 σ+
1r σ12 σ−2r 2 σ+

2r · · · i− 1 σ+
i−1r σi−1,i σ

+
ir︸ ︷︷ ︸

θi−1r

i σ+
ir+ · · ·

Each place task i has two sets σ−ir and σ+
ir of pick tasks at its left and its right, respec-

tively. More specifically, σ+
i−1r represents products which intervals overlap place interval

i−1 but not place interval i. Similarly, σ−ir gathers pick tasks such that their intervals over-
lap box interval i but not box interval i − 1. Eventually, σi−1,i gathers product intervals
which overlap both box intervals i− 1 and i. We refer to θi−1r as the subset of pick tasks
located between place task i − 1 and i, with θ0r (θBr) the subset located at the left (the
right) of box 1 (of box B, resp.). Note that the same pick task can belong to several sets θ
and one has to decide whether the task is performed and, if it is performed, in which set
θ. One advantage of a master sequence lies in the fact that, once the previous decisions
made, the time feasibility of the resulting pick-and-place sequence can easily be assessed.

The following formulation takes benefit of the master sequence notion and introduces
the following binary variables. A box b is filled by robot r if binary variable ybr = 1 (0
otherwise). A product p is picked in subset θbr if xbpr = 1.

max z =
∑
b

∑
r ybr
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∑
b

∑
p∈θbr

xbpr ≤ 1 , ∀p ∀r (1)

∑
r

ybr ≤ 1 , ∀b (2)

kybr ≤ −k
∑
i<b

yir +
∑
i<b

∑
p∈θir

xpir ≤ k , ∀b ∀r (3)

The master sequence Θr is time feasible , ∀r (4)

xbpr ∈ {0, 1} , ∀b ∀p ∀r
ybr ∈ {0, 1} , ∀p ∀r

The formulation aims at maximizing the number of filled boxes. Constraints (1-2) en-
force any product/box to be picked/filled once at the most. Constraints (3) aim at satisfying
the (flow) constraint, i.e. k product at the most should be picked before any place opera-
tion. As in (C. Briand and S. Ourari 2013), high level constraints (4) can be implemented
using a set of big-M linear constraints (not stated here for matter of conciseness) that use
integer variables sbr and fbr. Theses variables refer to as the earliest starting time and the
latest finishing time, respectively, of place task b on robot r (this value linearly depending
on the values of other binary variables), provided that sbr +Dbr ≤ fbr.

4 Conclusion

This paper sketches a formulation for solving the offline MPPSP. This formulation has
been tested and validated using some academic instances. A more systematic experimental
study is currently in progress to assess the efficiency of our approach. The special case
where the processing times of the pick/place tasks are identical (i.e., Dpr = Dpickr and
Dbr = Dplacer) will also be considered.
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1 Introduction

The research presented in this abstract is located in the multi-project environment.
Two approaches can be followed when working with a portfolio of projects, each with
their own methodologies. First of all the different projects can be combined into one large
super-project. This is done by adding additional precedence arcs and one dummy-start and
end-activtiy. In that way the problem is again reduced to a resource constrained project
scheduling problem (RCPSP), consequently this is called the single-project approach. There
is also a second way to deal with those multiple projects, namely the multi-project ap-
proach. Within this method every project remains an entity by itself, with its own critical
path (Kurtulus, I. and Davis, E.W. 1982). This second approach is preferred above the first
one, for multiple reasons. To begin, the first approach is nothing more than solving a single
project and takes distance from the multi-project environment. Secondly, up to now less
research has been done on this topic, which creates more opportunities for improvement
(Herroelen, W. 2005). Finally the second approach is a more realistic view of how multiple
projects are dealt with in practice (Browning, T.R. and Yassine, A.A. 2010). Next to those
two different ways of dealing with the schedule part of a portfolio of projects, there are also
different approaches of how the management of resources can be organized. First there is
the easiest method where the resources are all collected in one large resource pool. Those
can then be freely shared among the activities in the portfolio. This method is called the
resource sharing policy. Secondly, on the opposite end of the spectrum, there is the resource
dedication policy (Besikci, U. et. al. 2013). With this approach resources are dedicated to
a particular project at the beginning of the planning horizon. This method does not allow
to share resources between projects and consequently not between activities of different
projects. The policy is applied when sharing resources between projects is not feasible for
example if those projects are geographically too far distributed (Besikci, U. et. al. 2013).
As already mentioned those two ways are both ends of the resource management spectrum.
In between these two, multiple combinations are possible and are probably more realistic
approaches. An example of such an in between methodology is the dedication of resources
to projects but also allowing the transfer of these resources to other projects. According to
research on this topic, resource transfers should already be included in the scheduling part
(Kruger, D. and Scholl, A. 2009).

2 Problem description

This research deals with multi-project management, more precisely the scheduling and
resource management part. We have chosen to work with the multi-project approach.
Consequently every project is a separate entity and of course this decision also has an
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influence on the used methodology and its accompanied assumptions. The objective of this
research is minimizing the resource costs, including availability and transfer costs. We are
working with a static number of projects which have to be scheduled and resources have
to be assigned to them in order to be executed. Because not all projects have the same
due date, it is not necessary to start all of them as early as possible. All resources should
be dedicated to a particular project and stay unified with it until the project is completely
finished, after that resources can be transferred to other projects. The general renewable
resource availabilities are positioned as low as possible. To accomplish this, projects are
shifted further in time and resources are transferred between them. All this is done while
taking the precedence relations between projects and the projects´ due dates into account.
As a consequence the following assumptions have to be incorporated into the methodology:

- Resources can be transferred between projects, but only when the first project is fin-
ished and the second project should still be started.

- Transfer time is depending on the two projects between which the resources are trans-
ferred and on the amount transferred.

- Projects can not be interrupted in time.
- The due date of every project should be met.
- Precedence relations between projects have to be satisfied.
- Project activities have fixed durations.

3 Extensions on existing literature

This research idea originates from existing literature and is created as an extension on
the combination of those research topics. Liberatore, M.J. and Pollack-Johnson, B. (2003)
came up with a new methodology to minimize the resource availability costs in a sin-
gle project setting, more precisely solving the resource availability cost problem (RACP).
By doing this the project´s due date and the activities´ resource requirements have to be
satisfied. This methodology obtains the minimum resource availabilities for the different re-
source types by deriving them from the solution of resource-constrained project scheduling
decision problems (RCPSDP). These RCPSDPs are solved with only one or two resource
types, all the others are supposed to have an unlimited availability. Resource dedication is
also an important part of this research topic. The first ones to introduce resource dedica-
tion in a multi-mode and multi-project environment were Besikci, U. et. al. (2013). They
presented two solution approaches to solve this problem, which can be divided into two
sub-problems. First there is the dedication of resource capacities to a particular project,
secondly the activities of the projects itself are scheduled. The first methodology works
with a genetic algorithm in combination with a new local improvement heuristic, namely
combinatorial auction. The second methodology employs a langrangian based heuristic and
a subgradient optimization method to find a solution for the resource dedication problem.

The research presented in this abstract combines, adapts and extends the above intro-
duced research studies. Like in Demeulemeester, E. (1995), also in this paper one of the
goals is to minimize the renewable resource availability costs. With the difference that we
now have a portfolio of projects at our disposal between which resources can be transferred.
That is the reason why numerous solutions for the general resource availabilities are pos-
sible. The solution of this problem is not the summation of the optimal RACP solutions
of every project separately. The general resource levels will be lower because transferring
resources is allowed now. Of course these transfers bring along costs as well and shifting
projects further in time can not be done endlessly because of every project´s due date. Pre-
vious research has already investigated the implementation of resource transfers in project
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scheduling problems. Like in (Lacomme, P. et. al. 2017) where the resource transfers are
introduced in the scheduling problem via routing operations, with the ultimate goal of
minimizing the overall makespan. Another more practical example is the study of (Froger,
A. et. al. 2017). Here resource transfers are implicitly incorporated in the methodology by
only allowing that employees shift work locations on the same day, if these locations are
compatible. A Location is seen as compatible if the travel time between them is negligible
in comparison to a time unit. With the presented research the added value is the combina-
tion of the resource transfers with the undetermined resource availability levels. In contrary
to Besikci, U. et. al. (2013) renewable resources are not only dedicated to projects at the
beginning of the planning horizon. After a project is terminated, the renewable resources
can be assigned to a new project after they are transferred. Which makes the problem a
trade-off between availability and transferring costs, while still satisfying the projects´ due
dates. In figure 1 a comparison is made between on the left side the method presented in
this abstract and on the right side the methodology when every project is scheduled as
early as possible. The considered transfer times are indicated by the arrows in figure 1.
With this latter approach the portfolio´s cost is not optimized as a whole. Underneath
figure 1 the cost difference between the methods is presented. Assuming a transfer cost of
10 euro/unit and an availability cost of 20 euro/week. Information about the projects can
be found in table 1.
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Fig. 1. Example: comparison between methods

Calculations
Left approach
Transfer costs: ((50 + 50 + 25 +50) + (75 + 25 + 50)) * 10 euro/unit = 3250 euro
Availability costs: (100 + 125) units * 7 weeks * 20 euro/week = 31500 euro
Total cost = 34750 euro
Right approach
Transfer costs: ((50 + 50) + (75 + 25)) * 10 euro/unit = 2000 euro
Availability costs: (175 + 175) units * 5,5 weeks * 20 euro/week = 38500 euro
Total cost = 40500 euro
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Table 1. Project portfolio information

Project Duration Res.1 Res.2 Predecessor Due date
Project 1 3 weeks 50 25 / week 3
Project 2 2 weeks 50 75 / week 3
Project 3 2 weeks 50 50 project 1 week 6
Project 4 1 week 75 50 project 1 week 8
Project 5 2 weeks 50 75 project 2 week 8

4 Methodology

The research papers presented in the previous part were used to come up with this new
research problem and gave inspiration of which different methods can be applied to solve
the specific problem. As a consequence, first a full factorial design is set up to conduct a
complete analysis of multiple priority rules. The test problems used to perform this analysis
are generated with different network-, project- and resource-related characteristics, includ-
ing network complexity, the level of parallelism in the project portfolio and difference in
resource type usage by the projects. All this is done to decide in which situation which
priority rule should be used. Priority rule heuristics stay important for multiple reasons. In
comparison to meta-heuristics the computational complexity is lower, which makes them
interesting for larger problems. Next to this, priority rules are often employed to construct
initial solutions for meta-heuristics. Next to these priority rules, a meta-heuristic is con-
structed to test various experiments and provide some managerial insights. The influence
of the following situations on the objective function value is investigated:

- The ratio between resource availability costs and resource transfer costs.
- The ratio between the range in the projects´ due dates and the mean project duration.
- The diversity in usage of different resource types by the projects.
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1 Introduction

The planning of transshipment operations is a crucial task in today's global supply
chains, since the responsiveness of the supply chain as well as its cost structure are of-
ten heavily in�uenced by the operational e�ciency at transshipment nodes. Even though
speci�c transshipment processes may di�er considerably with respect to speci�c problem
characteristics, for instance due to the involved technologies or modes of transportation,
at the core of many more involved transshipment problems lie some fundamental decisions
that need to be taken irrespective of the speci�c application.

Generally speaking, at a transshipment node commodities are exchanged between dif-
ferent transport relations using some set of resources for (un)loading and transportation.
Typically, the commodity exchange can be modeled as a strict handover relation, in the
sense that the receiving vehicle cannot leave the system before the vehicle that supplies the
commodity has arrived. In order to facilitate an easy access to incoming vehicles, transship-
ment nodes often provide a special set of docking resources where vehicles are processed.
This can be rail-tracks in rail-rail or rail-road terminals (see (Boysen et al. 2011)), berths in
seaports ((Bierwirth and Meisel 2015)), �ight gates in airport hubs ((Dorndorf et al. 2007))
and dock doors at cross docks ((Boysen and Fliedner 2010)). Whenever these resources are
scarce, there is a fundamental decision problem to assign vehicles to docking resources over
time, such that all handover relations are satis�ed. Typically, these assignment problems
are solved under some time- or e�ciency-oriented objective function while considering sev-
eral additional constraints with respect to the loading and transshipment resources, storage
strategy, due dates, etc.

One important organizational constraint in cross-docking re�ects whether commodities
can be stored on the dock �oor or have to be transported directly to from one truck to
the next. While temporary storage up to 24hrs is typically possible in most applications, it
might restricted to reduce double handling or ensure that cooling requirements are met, see
(Boysen 2010) and (Boysen et al. 2012). Further, in some cross docks the loading process
of a truck may be interrupted, to clear the dock door for another more urgent vehicle,
e.g. see (Alpan et al. 2011) and (Alpan et al. 2011b). Finally, the handover relations them-
selves can be subject to structural constraints. For instance, if the cross-dock is run in an
exclusive service mode for in- and outbound trucks, e.g. see (Boysen and Fliedner 2010)
and (Chmielewski et al. 2009), no inbound truck receives any commodity from outbound
trucks. In addition to that, dock doors are partitioned into disjoint sets, such that inbound
(outbound) trucks can only be docked to speci�c inbound (outbound) doors. Such group-
ing constraints are also encountered in applications where doors are assigned to speci�c
transport relations, e.g. local or long distance transport relations.



In the following we will analyze the structure of �nding feasible docking assignments
under handover relations while considering the aforementioned problem characteristics.
This assignment problem typically has to be solved as an integral part of any solution
strategy that solves dock door scheduling problems under other time- or e�ciency-oriented
objective. In this sense, we study a core decision problem that can be responsible for much
of the computational challenge that is encountered in various applications. For this purpose,
we will introduce a formal framework for such decision problems in Section 2. Further, in
Section 3, we outline the results of a comprehensive complexity analysis of the di�erent
problem versions covered by the framework.

2 Formal Problem De�nition

We consider a set D of doors partitioned into q groups D1, . . . , Dq. Doors in the same
subset are assumed to be identical. Moreover, we consider a set V of vehicles partitioned
into groups V1, . . . , Vq. Vehicles in Vg, g = 1, . . . , q, can be docked only at doors in Dq.

We distinguish between problem settings where each vehicle can be docked only once
(�one�), each vehicle can be docked multiple times at the same door (�interrupt�), and
each vehicle can be docked multiple times at di�erent doors (�revisits�). We refer to this
parameter as the docking strategy in the following.

Moreover, we have a set H ⊆ V × V of handover relations (HRs). HR (v, w) ∈ H
represents vehicle v handing over (part of) its delivery to w. We say that v supplies w
in the following. With regard to the structure of HRs we adress speci�c problem settings
using two parameters, namely the pair structure and the group structure. First, according
to the pair structure we distinguish between settings where (v, w) ∈ H whenever (w, v) ∈ H
(�sym�), where (w, v) 6∈ H whenever (v, w) ∈ H (�asym�), and where we have no restriction
on H (�gen�). Second, according to the group structure we distinguish between settings
where (v, w) ∈ H only if v and w are in di�erent groups of vehicles (�inter�) and where,
additionally, (v, w) ∈ H with v and w in the same group is possible (�inner�). Note that
restricting HRs to pairs of vehicle in the same group would be a natural third option but
yields a problem setting which decomposes into group-speci�c subproblems.

If (v, w) ∈ H, v and w need to be docked such that these goods can be unloaded from
v, transported through the terminal to the door where w is docked, and loaded onto w.
In order to reduce the problem setting to the very core we ignore durations for unloading
or loading and transportation times. We distinguish, however, between storage strategies
where goods can be intermediately stored in the terminal (�sto�) and where this is not
allowed (�noSto�).

This gives us a family of 36 di�erent parameter settings. In each of the resulting problem
settings we are interested in sequences of docking operations (DS). Such an operation (v, d)
is speci�ed by vehicle v and the door d involved. For such an operation to be feasible there
has to be a group index g = 1, . . . , q such that v ∈ Vg and d ∈ Dg. A DS is feasible with
respect to the door allocation if each operation is feasible and it represents the order in
which docking operations are carried out.

Let σ be a DS, l(σ) its length, and σ(k) the kth operation in σ. We say that operation
σ(k) = (v, d), k = 1, . . . , l(σ), is active in k and, furthermore, in k′ > k if for each
k′′ = k + 1, . . . , k′ we have σ(k′′) = (w, d′) with w 6= v and d′ 6= d. That is, a docking
operation (v, d) is active as long as v is not docked at an other door and no other vehicle
is docked at d. Let e(σ, k) = k′ if σ(k) is active in k′ and (i) k′ = l(σ) or (ii) σ(k) is not
active in k′ + 1. We say [k, e(σ, k)] is the activity interval of σ(k).

A DS σ is feasible with regard to the docking strategy only if

� the docking strategy is �one visit� and σ contains exactly one operation for each vehicle,



� the docking strategy is �interrupt� and for any two operations (v, d) and (w, d′) in σ
we have v 6= w or d = d′, or

� the docking strategy is �revisits�.

A DS σ is feasible with regard to the storage strategy only if

� the storage strategy is �storage� and for each (v, w) ∈ H there are operations σ(k) =
(v, d) and σ(k′) = (w, d′) with k ≤ e(σ, k′) or

� the storage strategy is �no storage� and for each (v, w) ∈ H there are operations
σ(k) = (v, d) and σ(k′) = (w, d′) with [k, e(σ, k)] and [k′, e(σ, k′)] overlapping.

A DS σ is feasible if it is feasible with regard to the door allocation, the docking strategy,
and the storage strategy.

De�nition 1. Given a docking strategy, a storage strategy, D1, . . . , Dq, V1, . . . , Vq, and
H, the dock operation sequencing problem (DOSP) is to determine whether a feasible DS
exists.

We will refer to DOSP with a speci�c parameter setting by a quadruplet

(docking strategy|storage strategy|group structure|pair structure).

For example, (interrupt|sto|inner|asym) refers to the problem setting where vehicles may
approach the same door multiple times, goods can be stored, two vehicles do not supply
each other, and HR within a group are possible.

3 Computational Complexity

We give an overview of results in Table 1. In those cases where an entry in the quadruplet
specifying a problem setting is not given the corresponding result holds for any possible
entry. Horizontal solid lines separate problem settings di�ering in the docking strategy.

No. Problem Comment Complexity

1 (one|sto|inner|asym) generalization of 2 NP-complete for q = 1
2 (one|sto|inner|sym) equivalent to PATH WIDTH for q = 1 NP-complete for q = 1
3 (one|sto|inner|gen) generalization of 2 NP-complete for q = 1
4 (one|sto|inter|asym) generalization of 2 NP-complete for q = 2
5 (one|sto|inter|sym) generalization of 2 NP-complete
6 (one|sto|inter|gen) generalization of 5 NP-complete

7-9 (one|noSto|inner|−) equivalent to 2 NP-complete for q = 1
10-12 (one|noSto|inter|−) generalization of NP-complete

MIN CUT LINEAR ARRANGEMENT

13-18 (interrupt|sto| − |−) q doors su�cient, in P
19-21 (interrupt|noSto|inner|−) equivalent to VERTEX COLORING NP-complete for q = 1
22-24 (interrupt|noSto|inter|−) q doors su�cient in P

25-30 (revisits|sto| − |−) q doors su�cient, in P
31-33 (revisits|noSto|inner|−) 2q doors su�cient in P
34-36 (revisits|noSto|inter|−) q doors su�cient in P

Table 1. Computational complexity
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1 Introduction

In this work we consider synchronous flow shop scheduling problems where the process-
ing times of the operations are not fixed in advance. Instead, for each job a total processing
time is given which can be distributed freely among the machines, respecting some lower
and/or upper bounds on the processing times of the operations.

A synchronous flow shop (also called a “flow shop with synchronous movement”) (cf.
Kouvelis and Karabati (2011)) is a variant of a non-preemptive permutation flow shop
where transfers of jobs from one machine to the next take place at the same time after
the operations on all machines are finished. If the processing time of an operation on one
machine is smaller than the maximum processing time of the operations started on the
other machines at the same time, the corresponding machine is idle until the job may be
transferred to the next machine. In contrast, in a classical flow shop the transfer of jobs is
asynchronous: Jobs may be transferred to the next machine as soon as their processing on
the current machine is completed and processing on the next machine immediately starts
as soon as this machine is available.

The term “pliability” was first introduced in Weiß et al. (2016). Within this model, the
processing times of the individual operations of a job are not fixed in advance but may be
determined with some flexibility. They must respect given lower/upper bounds and add up
to the given total processing time of each job. For example, this allows to model situations
where the processing time of an operation can deviate from a fixed amount by some margin,
defined by the lower and upper bounds. Such a model occurs in practice if several machines
are able to process an operation and it is possible to distribute the processing time of an
operation among these machines. For example, workers at an assembly line might be trained
to not only be able to perform a single, dedicated operation, but to also be skilled enough
to work on additional ones. Then, instead of waiting for the next job to be transported to
them, they may continue working on the current job, which may lead to reduced idle times
and hence a better productivity of the assembly line.

2 Problem formulation

We consider a permutation flow shop with m machines M1, . . . ,Mm and n jobs where
job j consists of m operations O1j → O2j → . . .→ Omj . Operation Oij has to be processed
without preemption on machine Mi for pij time units. In a feasible schedule each machine
processes at most one operation at any time, each job is processed on at most one machine
at any time, and the operations of each job are processed in the predefined order.

The processing is organized in synchronized cycles where jobs are moved from one
machine to the next by an unpaced synchronous transportation system. This means that
in a cycle all current operations start at the same time on the corresponding machines.



Only after all operations have finished processing, all jobs are moved to the next machine
simultaneously. The job processed on the last machine Mm leaves the system, a new job
(if available) is put on the first machine M1. As a consequence, the processing time of a
cycle t (its so-called “cycle time” ct) is determined by the maximum processing time of the
operations contained in it. Furthermore, only permutation schedules are feasible, i.e., the
jobs have to be processed in the same order on all machines.

Let Cj be the completion time of job j, i.e., the time when j has been processed on
all machines and leaves the system. The goal is to find a permutation of the jobs such
that the makespan Cmax = maxj Cj is minimized. With each permutation a corresponding
(left-shifted) schedule is associated in which each operation starts as early as possible.

Huang (2008) introduced the notation “synmv” in the β-field of the well-known α|β|γ
scheduling classification scheme to indicate synchronous movement. Hence, the basic syn-
chronous flow shop problem with the makespan objective is denoted by F |synmv|Cmax.

In this work, the jobs are “pliable” in such a way that instead of a fixed individual
processing time pij for operation Oij on Mi we are only given a total processing time pj
of job j. Then, in addition to finding a job permutation, we also have to determine actual
processing times xij ≥ 0 for operations Oij such that

m∑
i=1

xij = pj (j = 1, . . . , n). (1)

In the unrestricted model, there are no constraints on the actual processing times, i.e., we
only have to fulfill

0 ≤ xij ≤ pj (i = 1, . . . ,m; j = 1, . . . , n). (2)

To indicate this situation, we add “plbl” in the β-field of the α|β|γ-notation.
In a more realistic, restricted scenario, additionally lower and upper bounds p

ij
, pij are

given, and the actual processing times have to satisfy

p
ij
≤ xij ≤ pij (i = 1, . . . ,m; j = 1, . . . , n). (3)

To indicate this situation, we add “plbl(p
ij
, pij)” in the β-field. We also consider the special

case that only lower bounds p
ij

are given, indicated by “plbl(p
ij
)”.

We assume all input data (processing times, lower and upper bounds) to be integer and
usually allow that the actual processing times xij may take arbitrary real values. However,
in some applications, the processing times must also be integer. A similar distinction has
been made for scheduling problems with preemption where usually continuous preemption
is allowed, but in some situations jobs can only be split at integer points in time. For some
special cases it was shown that always an optimal preemptive schedule exists where all
interruptions and all starting/completion times occur at integer time points (cf. Baptiste
et al. (2011)). Dealing with the same question for pliability, in the absence of upper bounds
allowing real-valued processing times does not lead to better schedules since we can show
that for problem F |synmv, plbl(p

ij
)|Cmax always an optimal schedule with integer-valued

processing times exists. Hence, in this case, when looking for an optimal schedule we may
restrict ourselves to schedules with integer processing times. On the other hand, in the
more general situation F |synmv, plbl(p

ij
, pij)|Cmax with lower and upper bounds, allowing

non-integer processing times can lead to better solutions.
Concerning complexity, problem F2|synmv, plbl|Cmax without any bounds on the pro-

cessing times is already NP-hard.



3 Solution approach

Since the problem is NP-hard, we cannot expect a polynomial time exact algorithm.
In preliminary tests, mixed integer linear programs could only be solved to optimality
for very small instances. To achieve good results, we use a two-stage heuristic. It can
be shown that for a fixed job permutation optimal corresponding processing times can
be obtained in polynomial time by linear programming. The problem is decomposed by
employing a local search procedure using the set of all job permutations as search space. For
each permutation corresponding optimal processing times can be calculated with the LP.
Unfortunately, for larger problem instances solving this LP is quite time-consuming. Since
in the local search approach, usually many permutations should be evaluated, it is more
efficient to use a direct combinatorial algorithm with a better run time than an LP solver.
Depending on the size of the problem, even if no such direct algorithm is known, it may
be more efficient to determine only near-optimal processing times heuristically instead of
solving this subproblem to optimality. Then more neighbors can be evaluated in the same
amount of time.

Thus, the subproblem of determining actual processing times for a fixed job permuta-
tion is of special interest. For problem F |synmv, plbl(p

ij
)|Cmax without upper bounds, we

propose a polynomial-time direct combinatorial algorithm to obtain optimal actual pro-
cessing times. On the other hand, the situation for problem F |synmv, plbl(p

ij
, pij)|Cmax is

more involved. While the case where arbitrary real-valued processing times are allowed can
be still solved in polynomial time, the problem becomes NP-hard if all actual processing
times are required to be integer.

In the first stage of the two-stage approach, we use a tabu search procedure with a
simple swap neighborhood. In a tabu list we store pairs of swapped jobs. A move is tabu if
it involves two jobs which are currently in the tabu list. In each iteration of the tabu search,
we consider the whole neighborhood (i.e., we evaluate all possible swaps of two jobs) and
perform the best non-tabu move or the best overall move if it results in a schedule with a
new best objective value (aspiration criterion). As inital solution we used a job permutation
calculated by the NEH heuristic (Nawaz et al. (1983)).

4 Computational results

To evaluate the two-stage approach, we simulated a scenario in which for each job
we are first given a “base” processing time for each operation (which corresponds to the
processing of the operation in the model without pliability) and then introduce flexibility
in such a way that we are allowed to deviate from these processing times on each machine
by some amount as long as the total processing time of the job remains the same. For our
test sets, we randomly generated instances of synchronous flow shops with 2 to 5 machines
and 10 to 150 jobs. For each operation Oij we chose a base processing time pBij uniformly
distributed over the interval [0, 100]. Using these base processing times, we generated lower
and upper bounds by defining two real-valued parameters α ≥ 0 and β ≥ 1 and setting
p
ij
= αpBij and pij = βpBij for all operations Oij . The total processing time pj of job j was

set to the sum of the base processing times of its operations. For each of the combinations
of n and m we generated five instances. Additionally, for each combination n,m and these
base processing times we generated several instances with different α- and β-values. In
the following, we discuss results for three different parameter sets: (α = 0, β = 2), i.e.,
a configuration in which we are allowed to deviate a lot from the base processing times
and two more restrictive parameter sets, (α = 0.5, β = 1.5) and (α = 0.8, β = 1.2). All



computational evaluations were performed on a computer with an Intel Core i3-370M 2.4
GHz processor and 4 GB RAM.

α = 0, β = 2 α = 0.5, β = 1.5 α = 0.8, β = 1.2
Initial Tabu Initial Tabu Initial Tabu

m n Gap Gap Time Gap Gap Time Gap Gap Time
2 10 3.90 0.85 0 6.17 2.36 0 9.93 6.09 0
2 50 0.90 0.02 2 2.01 0.25 2 4.10 1.59 2
2 100 0.65 0.01 11 1.61 0.16 18 3.37 0.72 14
2 150 0.58 0.04 49 1.41 0.21 45 2.84 0.81 80
3 10 11.42 5.40 0 13.31 7.01 0 12.35 10.03 0
3 50 5.20 0.51 3 8.51 2.56 3 13.23 6.67 4
3 100 4.33 0.19 32 7.80 1.47 26 11.37 4.56 31
3 150 3.92 0.26 154 6.06 0.98 115 11.15 3.75 159
5 10 20.38 12.98 0 19.36 16.99 0 27.91 22.20 0
5 50 12.23 3.84 7 19.54 9.25 7 26.16 16.74 7
5 100 10.84 2.16 81 14.84 6.12 46 25.27 13.27 69
5 150 10.56 2.33 383 15.21 5.49 291 24.61 12.31 238

Table 1. Results for problem F |synmv, plbl(p
ij
, pij)|Cmax

Table 1 shows the results of the two-stage approach for F |synmv, plbl(p
ij
, pij)|Cmax.

The gaps of the initial solutions as well as the results of the tabu search are reported
relative to a lower bound obtained by an LP relaxation. The computation times for the
tabu search are given in seconds, the time required to obtain an initial solution was below
one second for all instances.

Overall, it can be seen that the two-stage approach leads to a large improvement of the
initial solutions. Especially, in situations with high flexibility we can reach near-optimal
solutions even for larger instances in a reasonable amount of time.
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1 Introduction

Since the introduction of PERT networks (Malcolm et al. 1959) uncertainty in ac-
tivity durations has been increasingly modelled using the PERT methodology (Adlakha
and Kulkarni 1989). Recently, uncertainty in activity durations has modelled using in-
creasingly complex probability distributions (Colin and Vanhoucke 2015). Nevertheless,
computing the exact project makespan distribution for project networks is infeasible in
general (Hagstrom 1988). The special case where activity durations are modelled using
independently distributed exponential random variables has received moderate attention
in the literature (Kulkarni and Adlakha 1986), (Azaron et al. 2006). Moreover, this special
case has frequently been used as a basis to study more involved project scheduling prob-
lems (Azaron et al. 2011, Gutin et al. 2015). Therefore the accurate computation of the
resulting project makespan distribution is of vital importance.

This abstract proposes an integrated approach to validate the applicability, accuracy
and robustness of project completion time distribution computations in Markovian PERT
networks. The applicability of methods in the literature hinges on the theoretical assump-
tions underlying these methods. Given the size of the Markov chain, small rounding errors
in the calculation of the project makespan distribution can propagate and result in inac-
curate distribution functions. Furthermore, the ability of different methods to cope with
changes in the input data is assessed.

Section 2 discusses different approaches to compute the project makespan distribution
in Markovian PERT networks. Section 3 discusses the research and preliminary results.

2 Problem description

In this research, a project is represented using an acyclic directed graph G = (N,A)
where N is the set of nodes representing the project activities and A is the set of arcs
representing the precedence relations of the project network. The objective is to compute
the cumulative probability distribution of the project makespan:

F (t) = P (Sn+1 ≤ t) (1)

Where Sn+1 is the random variable representing the project makespan and P (Sn+1 ≤ t)
denotes the probability of the project completing before or at time t. Under the assumption
of exponentially distributed activity durations, the project makespan distribution can be
derived by computing the solution to a set of differential equations resulting from an
underlying Continuous Time Markov chain (Kulkarni and Adlakha 1986, Azaron et al.



2006). A solution of the linear system of differential equations is given by:

F (t) = e1
T · eQt · en (2)

Here, e1 and en are respectively the first and last column of the n ± ×n identity matrix
In and eQt is the matrix exponential of the infinitissimal generator of the CTMC defined
by (Kulkarni and Adlakha 1986) and (Azaron et al. 2006).

While several approaches exist to compute the matrix exponential (Moler and Van Loan
1978), the performance of most approaches is inadequate for our purpose. The three main
approaches to compute the matrix exponential are matrix decompositions, approximation
methods, scaling and squaring and Krylov methods.

First, matrix decomposition methods can be used to simplify the computation of eQt by
decomposing Q into a matrix product form Z ·D ·Z−1. This approach has been advocated
in the project scheduling literature (Azaron et al. 2006). Although matrix decomposition
methods have a good performance on small to medium sized problems, the size of the state
space encountered in project makespan distribution computations can be prohibitive for
these methods. Furthermore, the performance of these methods has only been demonstrated
on numerical examples in the literature (Azaron et al. 2006, Azaron et al. 2011).

Second, the scaling and squaring method relies on padé approximants rm of order m in
combination with a scaling parameter s to produce approximations for eQt.

eQ ≈ rm
(
2−sQ

)2s (3)

Therefore the resulting solutions are obtained numerically, in contrast to the exact expres-
sions obtained by the matrix decomposition methods. This approach is more stable than
the matrix decomposition methods and has less theoretical limitations (Moler and Van
Loan 1978).

Finally, Krylov methods (Moler and Van Loan 2003) do not compute the entire matrix
exponential, but approximate the product eQt · en without computing eQt explicitly. The
approximation is achieved by the Arnoldi process, to compute a matrix Qk with orthonor-
mal columns and the resulting approximation is given by

eQ · en ≈ Qke
HkQk · en (4)

Where the matrix exponential of the upper Heisenberg matrix Hk is easier to compute
and the large state space dimensions of the CTMC are reduced to dimensions k × k. This
method is especially suited to compute project makespan distribution functions for large
scale problems but can suffer from loss of accuracy if the computation of the matrix Qk is
unstable.

The scaling and squaring and Krylov methods have never been assessed in a project
scheduling setting. Therefore, the performance of algorithms to compute project makespan
distribution functions in Markovian PERT networks has never been assessed with regard
to applicability, accuracy and robustness.

3 Research and preliminary results

In this paper, the advantages and limitations of existing approaches to compute project
makespan distributions are compared. Furthermore, we assess the ability of specialised
techniques from linear algebra to overcome the existing limitations. Based on the resulting
analysis, we provide theoretical and managerial insights in the performance of the differ-
ent algorithms and the extent to which existing limitations can be resolved by adapting
traditional project data generation schemes used in the project scheduling literature.



The presented approaches are assessed on three key metrics, applicability, accuracy and
robustness. The assessment based on applicability comprises three parts. First the theoret-
ical limitation of the methods are assessed for several standard datasets from the project
literature (Vanhoucke et al. 2016) in terms of the invertibility of Z. Second, since the goal of
the research is to compute the cumulative distribution of the project makespan, computa-
tional results that do not adhere to the properties of cumulative distribution functions, i.e.
inft F (t) = 0, supt F (t) = 1 and monotonicity, essentially make the corresponding method
inapplicable for our purposes. Finally, the computation of the matrix exponential requires
matrix multiplication operations on matrices of vast dimensions, thus potentially causing
memory problems and an incomplete computation of the project makespan distribution.
The accuracy of an approach is measured in the number of significant digits lost during the
computation of the makespan distribution function. High loss of accuracy can make the
computation of probabilities very inaccurate. The robustness of the approaches is gauged
by perturbing the input data of the infinitissimal generator matrix of the CTMC with a
small factor 0.01 ≤ ε ≤ 0.02 and measuring the errors in the computation of the project
makespan distribution function by the euclidean norm at the decile values of the computed
distribution function.

Preliminary experiments show that the matrix decomposition methods advocated in
the project scheduling literature exhibit very limited performance in terms of applicability,
accuracy and robustness, regardless of the project data set on which they were assessed.
Moreover, the scaling and squaring algorithm is more robust to small alternations in the
input data, whereas Krylov methods fail to find stable solutions for project networks with
more than 10 activities. To mitigate the limitations inherent in matrix decomposition
methods, a new dataset is constructed building on the fundamental assumption underlying
the method of (Azaron et al. 2006), namely the existence of a set of |S| independent
eigenvectors, where |S| is the size of the state space of the CTMC. The performance of
all methods on the new dataset was tested and the decomposition method proposed in
the project scheduling literature has comparable performance to the scaling and squaring
algorithm, albeit at a higher computational cost.
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1 Abstract

At the end of the fifties, two main approaches were proposed to manage a large project:
the PERT method and the MPM method. In both approaches the project is modelled
by a graph and one has to compute critical paths. In the PERT graph, an activity is
represented by an arc whenever nodes represent events. In the MPM graph, an activity is
represented by a node whenever arcs represent precedence constraints. The drawback of
both methods is that they do not take into account resources. The specific drawback of
the event-node graph is its large size. The scheduling literature is essentially devoted to
problems with renewable resources and precedence constraints, modelled by an activity-
node graph. Renewable resources are allocated to activities at their starting times and
released at their completion times. A machine is an example of a renewable resource.
The basic problem is the Resource Constrained Project scheduling Problem (RCPSP).
The aim of this talk is to rehabilitate event-node graph and nonrenewable resources. A
nonrenewable resource is produced or consumed by an activity at its occurrence time.
The money is an example of a nonrenewable resource. Our basic problem is the Extended
Resource Constrained Project Scheduling Problem (ERCPSP). We will present a brief
review of literature on ERCPSP. We will explain that several approaches built for RCPSP
can be adapted to ERCPSP. We will also report some polynomial algorithms. Next we
will introduce several lower bounds and some linear programming models inspired from
RCPSP ones. Finally we will report some computational results and explain why it is
useful to study ERCPSP.
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1 Introduction

The Vehicle Routing Problem (VRP) aims at defining optimal vehicle routes that visit a
set of jobs spread on a given territory. Depending on the context, a job can be a delivery of
goods, a pick up of components, or a service provided on-site. When scheduling the workers’
routes for on-site services, the systematic use of cars (which is the main hypothesis in the
VRP literature) can be inefficient when only light equipments are transported and when
distances between some jobs could allow light transportation modes (e.g., bikes). Moreover,
using independently light transportation modes, as done in the VRP with heterogeneous
fleet (Baldacci et al. 2008), might not be always envisioned because of the limited range
of such transportation modes (i.e., the maximum allowed distance to travel). Indeed, some
jobs might be too distant from the depot (i.e., exceeding the allowed range or the total
allowed duration of a tour). In such contexts, synchronizing light and heavy transportation
modes could be a promising answer.

We focus here (see Section 2) on formulations involving, jointly, light and heavy re-
sources to serve jobs, where both transportation modes can move independently, and where
the light resources can be embedded in the heavy ones on some parts of their routes. The
heavy resource can be a car, a truck or a van. The light resource can be workers on foot,
on bike, equipped with an electric kick scooter, or whatever light transportation mean that
can be easily embedded into the heavy resource.

A rather scarce literature addresses the problem of synchronizing light and heavy re-
sources. In the home health-care context, a recent contribution considers synchronization
of walking and driving (Fikar and Hirsch 2015). It shows that the number of vehicles can
be reduced by up to 90% when an external company picks up and drops off nurses (who are
also allowed to walk). This reduction comes however with an increase on the total number
of workers employed. In the context of light-goods delivery, where foot couriers can be cou-
pled with vans, Lin (2011) shows that both the average cost and the number of used cars
can be reduced in comparison with the approach where vans are treated as independent
transportation modes. This gain on both dimensions is observed even if that study only
considers coordination during the van outbound or return leg. In parcel delivery, coupling
a drone (the light resource) with a single van (the heavy resource) could lead to a gain up
to 20% on the truck use (Murray and Chu 2015).

The above-mentioned papers successfully show the relevance of synchronizing heteroge-
neous vehicles with different characteristics. In this work, we consider the situation where
the workers have the choice between traveling by car, by using electric kick scooters, or
simply walking. Moreover, carpooling is enabled. The potential gain offered by the syn-
chronization of such transportation modes is measured and discussed (see Section 3).



2 Synchronizing workers and vehicles with carpooling

We propose a new formulation that allows the synchronization of cars (heavy resource)
and workers (light resource) potentially equipped with an electric kick scooter. On the one
hand, the light resource is cheaper but limited by its speed and range. On the other hand,
the heavy resource is faster and it can transport multiple workers, but at a larger cost and
pollution impact. If not coupled with the heavy resource, the light resource is restricted
to the exploration of the jobs located close to the depot. As a consequence, the heavy
resources would have to make great detours to visit distant jobs in the same tour.

As electric kick scooters can be easily embedded into a car, coordinating and synchro-
nizing these two types of resources turn out to be a promising approach to overcome the
individual drawbacks of each of these two transportation modes. More precisely, we con-
sider the case where carpooling is enabled, meaning that heavy resources can transport
multiple light resources (with a maximum number of Q = 2 workers equipped with elec-
tric kick scooters per car). Workers are split into two categories, the car drivers and the
passengers. Light and heavy resources can couple and uncouple as many times as required.
Drivers are allowed to serve jobs and to use an electric kick scooter to reach jobs, but the
return path to the car is mandatory. Passengers can be picked up elsewhere than at the
drop-off location, after they have been using the electric kick scooter to travel between
jobs that are located nearby. The considered problem is an extension of the classical VRP
with time windows, in which workers with an individually assigned car must leave and
come back to the depot within the working day, after having served the jobs within their
assigned time windows. We focus here on analyzing the impact offered by the introduction
of electric kick scooters, regarding their speed and range.

We have developed a metaheuristic (MH) based on the ruin and recreate principle
(Pisinger and Ropke 2011). MH aims at improving a solution by sequentially removing
and reinserting jobs. Depending on the search phase, MH can remove up to 30% of the
inserted jobs. In general, the more time the search is trapped in the same local optimum,
the more jobs are removed and reinserted afterwards. A typical output solution is given
in Figure 1. Each worker has a color code: light gray for worker w1, gray for w2, double
line for w3, and black for w4. Heavy (resp. light) resource paths are represented with plain
(resp. dashed) lines. w1 and w4 leave the depot in the same car. w4 is dropped off at job
j30 and uses a light resource to travel to j1, where s/he is picked up by w1. Some drivers
are traveling some sub-routes with a light resource, like w2 on path j4 − j8 − j37 − j19. All
workers and vehicles start and end their working day at the central depot located in the
middle of the grid.

3 Computational experiments

To validate the efficiency of MH, its results are compared to optimal VRP solutions
where only heavy resources are used. The optimal VRP solutions are obtained with the
Branch-And-Price algorithm (BP) proposed in Desaulniers et al. (2008). Allowing the
workers to move without a car while enabling carpooling is expected to help managers
reduce both the number of cars used (fcar) and the total driving distance (fdist). f∗

car and
f∗
dist refer to the optimal values of fcar and fdist found by BP, respectively. Depending on
the instance configuration, replacing a heavy resource by a light one can either reduce or
increase the driving distance. The reduction occurs when detours to carry the light resources
are overcompensated by the pooling of the heavy resources, whereas the augmentation
occurs when too many detours are required to carry the light resources. We consider the
case where managers want to reduce f∗

car without increasing f∗
dist.
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Fig. 1. Solution exhibiting coordination between light and heavy resources.

We consider 60 instances derived from real data of a large energy provider. The car
speed is set to 30 km/h, whereas the light-resource speed is either 4 km/h (for walking)
or 15 km/h (for the electric kick scooter). A 10-km square grid is considered, representing
an urban configuration. The depot is located at the center of the grid, and Euclidean dis-
tances are considered between two job locations. Instances with n ∈ {20, 30, 40, 50} jobs
were generated. Indeed, lower instance sizes do not exhibit enough potential for carpool-
ing, whereas BP is not able to provide optimal VRP solutions for larger sizes. The job
characteristics (i.e., location, duration, time window) are randomly generated, based on
the uniform distribution. The duration of each job belongs to [15, 34] minutes. There are
three types of instances. First, for the 20 All-Day instances, each job has the same time
window [8:00, 15:00], corresponding to the full planning horizon (i.e., the working day).
Second, for the 20 Half-Day instances, each job has either time window [8:00, 11:30] or
[11:30, 15:00]. Finally, for the 20 Quarter-Day instances, the possible time windows are
[8:00, 9:45], [9:45, 11:30], [11:30, 13:15] and [13:15, 15:00]. These three types of instances
represent three service levels that can be offered to the involved clients. Indeed, the shorter
is the time window, the better it is from the client perspective, as s/he has to block a
shorter time period within which s/he can be served.

Table 1 shows the percentage improvements obtained on fdist and fcar where the follow-
ing features are modified: light resource type (i.e., walking vs electric kick scooter), range
(i.e., 5 km vs 10 km), service level (i.e., All-Day vs Half-Day vs Quarter-Day). Average
results (over the 60 instances) are given in the last line. One can observe that the gain of
only allowing walking and carpooling can help decreasing the driving distance by 5.57%
and the number of cars by 5.76% (see the left double column labeled with "5 km"). The
results highlight the importance of increasing the speed and range parameters to magnify
the gain offered by the synchronization of the light and heavy resources. Indeed, both fdist
and fcar can be improved by 9.18% and 14.14%, respectively. Note that additional exper-
iments on these instances have shown that without limiting the driving distance to f∗

dist,
the fcar-gain can be up to 19.90%. Last but not least, it is important to have in mind that
conservative assumptions were considered for generating the instances. Indeed, there are
less than 0.5 job per km2 and the average distance between jobs is around 5.5 km, and
hence only 3% of the edges are eligible to be traveled with a light resource (i.e., when the
distance between two jobs is below 1 km). One can reasonably assume that more favorable



cases would occur in other practical situations (especially in urban contexts), which would
lead to the amplification of the gains.

Table 1. Potential gain when workers can move without cars (allowing carpooling).

Light resource Walking worker Electric kick scooter

Range 5 km 10 km 5 km 10 km

Objective fcar fdist fcar fdist fcar fdist fcar fdist

All-Day 11.48% 8.56% 14.75% 10.88% 18.03% 9.87% 22.95% 16.92%

Half-Day 6.25% 5.79% 6.25% 8.36% 10.94% 6.29% 12.50% 9.61%

Quarter-Day 0% 3.58% 1.52% 3.42% 6.06% 3.23% 7.58% 4.12%

Average 5.76 % 5.57 % 7.33% 6.93% 7.91 % 5.92 % 14.14 % 9.18 %

4 Conclusion

In this paper, we highlight the relevance of synchronizing heterogeneous vehicles that
vary in their characteristics, more precisely light and heavy resources that differ in their
speed, range and operational cost. Such a coordinated scheduling helps reducing both the
number of heavy resources needed and the total driving distance. Increasing the speed
of the light resource and its range leads to higher gains, and ultimately the obtained
solutions would be close to those which can be achieved by coordinating truck and drones.
Indeed, in the context of delivery, the next step, after having improved the situation by
replacing walking by electric kick scooters, would be to consider drones as light resources.
Interestingly, drones could even be faster than trucks, but additional constraints such as
capacity and landing eligibility would have to be considered.
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1 Abstract

In this paper, we will research for what types of resource-constrained project scheduling
problems (RCPSPs) with stochastic durations an optimal policy can be constructed, which
incorporates an optimal baseline schedule as well as optimal continuations whenever the
realized durations of an activity render the baseline schedule or an already adapted version
of it infeasible.

2 State of the art

Every single day millions of small, medium and large projects are being executed. The
planning of these projects is not a simple endeavor. One often hears about the failure to
complete a project within time, within budget and according to specifications (see Flyvb-
jerg, 2005, for a nice overview). Perfect examples thereof are the building of the interna-
tional airport in Denver (200% overrun of the costs), the building of the Chunnel (80%
overrun of the costs) and the organization of the Olympic Games in Athens (a billion Euro
above budget). It might be obvious that project planning didn’t live up to its promise in
these cases (as in many others). Fundamental research in the field of project planning is
therefore of utmost importance.

The vast majority of the project scheduling efforts over the last forty years have con-
centrated on the development of a workable baseline schedule with the goal of obtaining a
project duration that is as short as possible. One traditionally makes the assumption that
the durations of the activities are known and deterministic and that the resources are fully
available. A realistic project, however, will always be subject to disruptions. Many types
of disruptions have been studied in the literature (Yu and Qi, 2004, Wang, 2005, and Zhu
et al., 2005): activities can take longer than primarily expected, resource requirements or
availabilities may vary, due dates may change during the execution of the project, new
activities may have to be inserted (Artigues and Roubellat, 2000), etc. Research in project
scheduling has focused on the one hand on proactive and reactive procedures to counteract
the effects of these disruptions as much as possible: proactive planning attempts to build
a stable project plan that takes the possible disruptions as much as possible into account,
while the reactive planning procedures are called every time the disruption changes the
baseline schedule such that it cannot be executed anymore as planned.

A typical objective function for the proactive project planning phase is the weighted
sum of the deviations between the planned and the realized starting times of the different
activities in the project. Quite some research (e.g., Leus and Herroelen, 2004, Van de Vonder
et al., 2006, 2007) focused itself on the construction of stable project plans and this mainly
under the assumption of uncertain durations. Typically, the solution procedure consisted
of two phases. In the first phase, a baseline plan is built that is feasible with respect



to the precedence relations as well as to the resource constraints and that is based on
previously determined durations and resource requirements for every activity. In a second
phase, this plan is made more stable through the introduction of time buffers before the
activities (even if their predecessors take longer than expected, this doesn’t automatically
lead to a postponement of the corresponding activity) and through the determination of
how the resources are passed along from activity to activity. A disadvantage of such a
two-step procedure obviously lies in the fact that the ultimate results depend heavily upon
the plan that was chosen in the first step (typically an optimal plan for the deterministic
version of the RCPSP). However, very recently Davari and Demeulemeester (2016) have
introduced an integrated proactive and reactive project scheduling problem for the RCPSP
with uncertain durations and developed different Markov Decision Process (MDP) models
to solve this problem. This means that not only a good baseline schedule is determined,
but also all good continuations in case certain combinations of the activity durations occur
that prohibit the baseline schedule or an already adapted schedule from being executed as
planned.

A second strand of literature that solves the underlying problem in a totally differ-
ent way is referred to as the stochastic RCPSP (SRCPSP). Methodologies for stochastic
project scheduling view the scheduling problem as a multi-stage decision process. So-called
scheduling policies are used to decide at each of the stages of a multi-stage decision pro-
cess, that occur serially through time at random decision points, which activities selected
from the set of precedence and resource feasible activities (the so-called admissibility con-
straints) have to be started (Ashtiani et al., 2011, Möhring et al., 1984, 1985, and Stork,
2001). The so-called non-anticipativity constraint requires that scheduling decisions can
only be based on the observed past and a priori knowledge about processing time distribu-
tions. The objective is to minimize the expected project duration. Scheduling policies do
not construct a complete schedule before the initiation of the project, but gradually build
a schedule during the project’s implementation. Because of this characteristic, stochastic
scheduling policies are often referred to as purely reactive or on-line procedures. This also
implies that no baseline schedule is constructed, which is considered as one of the more im-
portant drawbacks of this approach. In this SRCPSP, the duration Di of each non-dummy
activity i is a random variable. The random vector (D2, D3, . . . , Dn−1) is written as D.
According to the definitions given in Igelmund and Radermacher (1983ab) and Möhring et
al. (1984, 1985), a scheduling policy Π makes decisions at the decision points t = 0 (the
start of the project) and at the completion times of activities. A decision at time t is to
start at time t a precedence and resource feasible set of activities, S(t), exploiting only
information that has become available up to time t. As soon as the activities have been
finished, the activity durations are known, yielding a realization (sample, scenario) d of
the random vector D. For a given scenario d and a policy Π, the project duration CΠ

max(d)
is the resulting schedule makespan. The objective of the SRCPSP is to select a policy Π∗

that minimizes E(CΠ
max(d)) within a specific class of scheduling policies.

Various classes of scheduling policies have been proposed in the literature. Stork (2001)
reports promising computational results using so-called preselective policies that have been
introduced by Igelmund and Radermacher (1983a) and three important subclasses of the
class of preselective policies: early-start policies (ES-policies), linear preselective policies
(LIN-policies) and activity-based policies (AB-policies). Ashtiani et al. (2011) introduce
pre-processor policies (PP-policies) which make a number of a-priori sequencing decisions in
a pre-processing phase while the remaining decisions are made dynamically during project
execution. Quite some interesting research has been performed on determining the quality
of the different scheduling policies.



3 Methodology

The goal of the research in this paper is to find optimal policies for particular versions
of the RCPSP with uncertain activity durations. We will clarify this goal first by a small
example instance for a standard case of the RCPSP with uncertain activity durations.

 

  Fig. 1. Representation of small project network.

Figure 1 represents a small project network of 8 real activities and 2 dummy activities
(representing the start and end of the project), where the distribution of the activity
durations is shown in the table on the right of the figure and the resource requirements for
each activity are shown above the nodes that indicate the activities (the resource availability
is determined to be 8 units per time unit).

Table 1. The starting times for ten feasible schedules

Sk

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Sk
0 0 0 0 0 0 0 0 0 0 0

Sk
1 0 0 0 0 0 0 0 0 0 0

Sk
2 1 1 0 1 5 0 7 4 2 7

Sk
3 3 3 4 4 3 3 3 3 5 5

Sk
4 0 0 4 0 0 7 0 0 0 9

Sk
5 6 6 7 7 7 7 7 7 9 14

Sk
6 6 6 7 7 7 12 5 7 9 14

Sk
7 7 8 7 8 12 12 14 12 11 15

Sk
8 11 13 13 12 15 15 17 15 15 20

Sk
9 13 15 15 15 17 18 19 18 18 23

Table 1 represents the starting times for each activity of 10 schedules that are somehow
created and that are feasible for at least one of the realizations of the durations of the
activities. The optimal policy over these 10 schedules for this problem is then as follows:
the optimal baseline schedule is schedule S9, for which the planned starting times can be
found in the last but one column of Table 1. However, if at time 2 it becomes clear that
activity 1 takes longer than 2 time periods (a 20% chance, see Figure 1), schedule S9 is no
longer feasible (see upper left schedule of Figure 2 where activities 1, 2 and 4 are scheduled
at the same time, needing 2 + 3 + 4 = 9 resource units whereas only 8 are available). At
that time, the optimal policy indicates that one should switch to schedule S8, which is
represented in the upper right corner of Figure 2. However, if at time 4 it turns out that



activity 4 requires a duration of 5 time units, the current schedule becomes infeasible again
(see lower left corner of Figure 2): at that time the optimal policy indicates that one should
switch to schedule S5 (see lower right corner of Figure 2). Obviously, if more and better
schedules could be generated, the resulting proactive/reactive policy will turn out to be
better. This surely is a very interesting topic for further research. This paper, however, will
analyze for which restricted versions of the RCPSP with stochastic durations true optimal
policies can be constructed that do not depend on the generation of a restricted set of
feasible schedules.

 
Fig. 2. Representation of the different schedules in the optimal policy.
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1 Introduction and problem statement

In recent years, approaches providing robust schedules have been increasing their im-
portance in the production scheduling research area. The pursued objective is to obtain
schedules being insensitive - as much as possible - to disturbing factors, protecting the
decision-maker against the impact of unfavorable uncertain events. In this paper we ad-
dress the scheduling of a set of jobs J in a paced assembly line in presence of uncertainty
affecting the availability of production resources. The proposed approach takes inspiration
from the assembly process in the aircraft manufacturing industry. Each job j has to be
processed in the assembly line made up of M stations. Being paced, the line is characterized
by a cycle time, i.e., at a given time, all the parts move to the next station simultaneously.
Hence, within the cycle time, a given deterministic amount of work has to be accomplished
in each station. The availability of production resources, i.e., the available working hours
of the workers during each cycle time, is modeled as a stochastic variable. The manufac-
turing system described is a permutation flow-shop with no-wait property (Emmons and
Vairaktarakis (2013)). The proposed approach address the definition of a robust schedul-
ing for the assembly line aiming at minimizing the conditional value-at-risk (CV aR) of the
residual work content, i.e. the amount of workload that cannot be completed during the
cycle time in the stations, due to a lack of available resources. A branch & bound approach
is developed to solve the described problem to optimality. The objective function used, the
CV aR is a measure of risk widely used in the financial research, e.g. in portfolio optimiza-
tion (Rockafellar and Uryasev (1999), Rockafellar and Uryasev (2002)). This class of risk
measure has been already taken into consideration for scheduling approaches (Tolio, T. et
al. (2011), Sarin, S. C. et al. (2014)). Specifically, the permutation flow-shop scheduling
problem (with or without no-wait property) has been addressed in a considerably large
number of papers, e.g., a branch & bound approach is developed by (Kim (1995)) with
the objective of minimizing total tardiness, whereas several mixed integer formulations and
an implicit enumeration approach are proposed in (Samarghandi and Behroozi 2017) and
(Samarghandi and Behroozi (2016)). Nevertheless, the proposed scheduling problem has
not been addressed in previous researches.

2 Description of the approach

The proposed branch & bound framework relies on a sequential definition of the sched-
ule. At each level l of the associated tree l ∈ J , a partial solution provides the sequence of
the first l jobs scheduled, while the remaining J − l ∈ J \ S jobs are the candidates to be
scheduled next in the sequence. Hence, each node of the tree has as many child nodes as
the jobs to schedule, each of them representing a partial solution where a different jobs is



added to the partial sequence. The solution tree is explored adopting a depth-first strategy
selecting the most promising branches in terms of the best lower bound. At each node,
a lower and an upper bound on the target performance (the residual work content) are
calculated to determine the most promising branches and prune the dominated ones. The
contribution to the objective function of already scheduled jobs is easily calculated. Being
the system a permutation flow-shop, once a job is scheduled in the first station, the cycle
times where it will be processed by the following stations are automatically determined.
Then, considering a single resource with availability Ac for each cycle time period c, the
sequencing of that job j also entails a resource consumption Rjc. If a job j is scheduled to
enter the first station of the line in period p, its contribution to the objective function is:

RWCS∪{j} = ∗
c
(Ac ∗ Rj,c), ∀ j ∈ J \ S, c = p, . . . p + M − 1 (1)

where ∗ is the convolution operator.
The lower bound distribution of the residual work content caused by an unscheduled

job i ∈ J \S +{j} can be estimated through the scheduling of a dummy job ĩ1, having the
lowest resource request among the ones of the J − l unscheduled jobs. This contribution
can be estimated according to Eq. 2.

RWCLB
S+{j}∪i = ∗

c
(Ac ∗ Rĩ1,c), ∀ i ∈ S + {j} \ J , c = p, . . . , p + M − 1 (2)

In an dual way, the upper bound distribution of the residual work content caused by
an unscheduled job i ∈ J \ S + {j} can be estimated scheduling a dummy job ĩ2 having
highest among the resource request of the J − l unscheduled jobs (Eq. 3).

RWCUB
S+{j}∪i = ∗

c
(Ac ∗ Rĩ2,c), ∀ i ∈ S + {j} \ J , c = p, . . . , p + M − 1 (3)

Finally, the lower and upper bounds of the considered node can be calculated as:

RWCLB = ∗
i

RWCLB
S+{j}∪i ∗ ∗

j
RWCS∪{j}, ∀j ∈ S \ J , i ∈ S + {j} \ J (4)

RWCUB = ∗
i

RWCUB
S+{j}∪i ∗ ∗

j
RWCS∪{j}, ∀j ∈ S \ J , i ∈ S + {j} \ J (5)

Grounding on these calculations, the lower and upper bounding distributions for the
residual work content can be calculated in each node. Furthermore, these distributions can
also support the calculation of the lower and upper bound of a function of the risk associated
to the resource consumption, e.g., the CV aR, with the aim at assessing the robustness of
the solution. Notice that, Eq. 4 and 5 provides effective bounds for the CV aR only in
case the resource requirements of the jobs are deterministic. In this particular case, the
convolution operator merely shifts the availability distributions without re-shaping it. This
ensures the conditional value-at-risk of residual work content being a regular objective
function.

Figure 1 further depicts the branching scheme adopted, as well as the computation of
the bounds for the CV aR. Blue and black cumulative distribution functions represent the
lower and upper bound distributions respectively. Nodes with a lower bound of the CV aR
higher than the incumbent CV aR are pruned.
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Fig. 1. Branching scheme and bounds computation

3 Testing and Industrial Application

The developed branch-and-bound approach has been implemented in C++ using the
BoB++ library. Computational experiments have been performed on 8 parallel threads
on an Intel Four-Core i7 Processor 7700-HQ@3.4GHz and 16 GB of DDR4 SDRAM. The
performance of the algorithm has been analyzed in terms of the time to find an optimal
solution and the fraction of nodes explored solving 9-jobs instances sampled from a pool
of 68 real orders. The testing instances have been constructed as follows:

1. the resource requirement of a job j in station m is deterministic. In fact, at the time
the assembling of an aircraft is scheduled, order specifications are known and fixed;

2. the resource availability in station m in time cycle c is a discrete triangular distribution,
whose maximum value matches the planned ideal amount of workforce while minimum
and the mode model the variability caused by absenteeism or other lacks of personnel;

3. the risk level used for the CV aR is set to 10%, this value depends on the risk aversion
of the planner, since it defines the quantile of the tail whose expected value must be
minimized.

The algorithm was able to find the optimal solution in 8264.15 seconds on average,
ranging from a minimum of 7803.20 to a maximum of 8819.61. The average number of
evaluated nodes was 280721 over a total of 623547, with an average pruning efficiency of
about 55%. The main cause of the relatively long computational times is due to the modest
variability in terms of workload requirements among the considered orders, because their
assembly process is composed of more or less 90% of mounting and testing operations for
structural components that are common to all the orders, while customization activities
have a lower impact in terms of equivalent man hours. Nevertheless this is partially due
to the oversimplification of the assembly process to a single type of resource and, hence,
reducing the impact of the uncertainty affecting the availability of specific resources. More-



 

  

 

Fig. 2. Distribution of the residual work content obtained with the minimization of the CV aR
(right) and the expected value (left).

over, due to the convolution operations, the amplitude of the support of the distributions
has a strong influence on the time needed to accomplish calculations within a single node.

An additional analysis was carried out to compare the proposed approach against
scheduling to minimize the expected value fo the residual work content (RWC). An ex-
ample is provided in Figure 2 showing the histogram of the RWC in the case of the
minimization of the expected value (left) and the CV aR (right). Although the expected
value in both the cases is almost identical, the CV aR is rather different (0.73 against 0.70)
clearly showing that minimizing the CV aR actually reduce its value in the optimal so-
lution. Moreover the distribution on the right shows a low occurrence probability for the
highest values of the RWC, thus demonstrating the capability of the approach to protect
the schedule against the worst cases.
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1 Introduction

We investigate a fundamental stochastic scheduling problem where jobs with uncertain
processing times must be scheduled non-preemptively on m identical parallel machines.
We are given a set J of n jobs, where each job j ∈ J is modeled by a random variable
Pj with known distribution. The actual realization of a processing time becomes known
only by executing a job. More precisely, a job notifies the scheduler when it completes.
The goal is to find a policy Π that decides for any point in time which jobs to schedule
such as to minimize the expected total completion time,

∑
j∈J E[CΠj ]. Here CΠj denotes

the completion time of job j under policy Π, and we drop the superscript whenever it is
clear from the context. The scheduling problem can be stated in the standard three-field
notation as P||E[

∑
j Cj ].

The deterministic version of the problem is well-known to be solved optimally by the
Shortest Processing Time (SPT) rule (Rothkopf 1966). A natural generalization of this rule
to the stochastic setting, the Shortest Expected Processing Time (SEPT) rule, is optimal
when processing times follow exponential distributions (Bruno et al. 1981). For arbitrary
distributions no optimal policy is known, and in the past decade research has focused on
approximative policies. A stochastic scheduling policy Π is an α–approximation, for α ≥ 1,
if for all instances I of the problem at hand it holds that

∑
j∈JI E[C

Π
j ] ≤ α

∑
j∈JI E[C

∗
j ].

Here, C∗j denotes the completion time under an optimal stochastic scheduling policy on
the given instance I, assuming a priori knowledge of the set of jobs JI and their processing
time distributions Pj , but not their actual realizations. In particular, the optimal policy
also does not know the realizations, i.e., it is non-clairvoyant.

Several approximation algorithms have been developed with approximation guarantees
that depend either on the parameters m and n (Im et al. 2015) or on the probability
distributions of the processing times (Möhring et al. (1999), Megow et al. (2006), Schulz
(2008), and Skutella et al. (2016)). In the latter case, the approximation guarantee is of
order O(∆) where ∆ is an upper bound on the squared coefficients of variation of the
processing time distributions Pj , that is, Var[Pj ]/E[Pj ]2 ≤ ∆ for all jobs j. Interestingly,
there is a 2-approximation algorithm for the preemptive (weighted) variant of our stochas-
tic scheduling problem P|pmtn|E[

∑
j Cj ] independently of the distributions (Megow and

Vredeveld 2014).
In this note we rule out distribution-independent approximation factors for simple list

scheduling policies in non-preemptive stochastic scheduling. More precisely we consider
so-called index policies that assign the same priority to jobs with the same probability dis-
tribution and schedule jobs one after the other on the first machine that becomes available.
Job-based index policies do not consider the number of jobs or the number of machines.
We give a lower bound of Ω(∆1/4) for job-based index policies. Somewhat surprisingly
this lower bound is obtained already for very simple instances with only two types of jobs,
identical deterministic jobs and a set of stochastic jobs that all follow the same Bernoulli
distribution. For this class of instances we also give a policy that is an O(m)-approximation.



2 Lower bound for index policies

Theorem 1. Any job-based index policy has approximation factor Ω(∆1/4) for P||E[
∑
j Cj ].

To prove this lower bound we consider a simple class of instances that we call Bernoulli-
type instances. This class consists of two types of jobs, deterministic jobs Jd and stochastic
jobs Js, with jobs of each type following the same distribution. A deterministic job j ∈ Jd
has processing time Pj = p, and a stochastic job j ∈ Js has processing time Pj = 0 with
probability q ∈ (0, 1) and Pj = l with probability 1− q.

Proof. We define two families of Bernoulli-type instances, I1(∆,m) and I2(∆,m), for the
problem P||E[

∑
j Cj ] where ∆ is the upper bound on Var[Pj ]/E[Pj ]2. The instances differ

only in the number of deterministic and stochastic jobs, nd and ns, but not in the processing
time distributions. We define the processing time for deterministic jobs in Jd to be p = 1,
and for stochastic jobs j ∈ Js we define

Pj =

{
0 with probability 1− 1/∆

∆3/2 with probability 1/∆.

Note that the squared coefficients of variation are bounded from above by ∆.
For such Bernoulli-type instances there are only two job-based index policies, one where

the deterministic jobs have higher priority, denoted by Jd ≺ Js, and one where the stochas-
tic jobs have higher priority, denoted by Js ≺ Jd. We show that for any fixed ∆ > 1, there
exists a value of m such that the cost of the schedule produced by Jd ≺ Js on instance
I1(∆,m) is greater by a factor of Ω(∆1/4) than the cost of the schedule produced by
Js ≺ Jd, and vice versa for instance I2(∆,m). As the instances I1(∆,m) and I2(∆,m) are
indistinguishable to a job-based index policy, this result implies the lower bound.

The First Instance. Instance I1(∆,m) is defined by nd = ∆3/4m and ns = 1
2 ∆m. We

distinguish both priority orders.

• Jd ≺ Js : When jobs in Jd are scheduled first, then no job in Js starts before nd/m
(assuming w.l.o.g. that nd/m ∈ Z). Thus,

E
[ ∑
j∈J

Cj

]
≥ nd
m
ns =

1

2
∆7/4m.

• Js ≺ Jd : Let X be a random variable denoting the number of jobs in Js that turn out
to be long. Note that X ∼ Bin(ns, 1/∆) and E[X ]= m/2. We distinguish two cases.
◦ X < 3

4
m : Every stochastic job starts at time 0. Thus, E

[∑
j∈Js Cj |X < 3

4m
]
≤

3
4∆

3/2m. Furthermore, at least 1
4m machines are free for scheduling deterministic

Jobs, Jd, at total cost bounded by E
[∑

j∈Jd Cj |X < 3
4m
]
≤ nd(nd+1)

1
4m

≤ 8∆3/2m.

◦ X ≥ 3
4
m : we get a (very crude) upper bound on the expected cost by assuming

all jobs have processing time ∆3/2 and then scheduling them on a single machine:
E
[∑

j∈J Cj |X ≥
3
4m
]
< 1

2 (nd + ns)(nd + ns + 1)∆3/2 ≤ 3∆7/2m2.

To combine both cases and determine the total expected cost, we use the Chernoff-
Hoeffding bound, which gives P

[
X ≥ 3

4m
]
≤ exp(−m

24 ), and we conclude

E
[ ∑
j∈J

Cj

]
≤ P

[
X <

3

4
m

]
E
[ ∑
j∈J

Cj

∣∣∣∣X <
3

4
m

]
+ P

[
X ≥ 3

4
m

]
E
[ ∑
j∈J

Cj

∣∣∣∣X ≥ 3

4
m

]
≤ 3

4
∆3/2m+ 8∆3/2m+ exp

(
−m
24

)
· 3∆7/2m2 = O(∆3/2m),

for sufficiently large m.



Thus, on sufficiently many machines, the index policy Jd ≺ Js has total cost greater by a
factor of Ω(∆1/4) than the cost of policy Js ≺ Jd.

The Second Instance. Instance I2(∆,m) is defined by nd = ∆5/4m and ns = 2∆m. Using
similar arguments as in the previous case, we can show that the index policy Js ≺ Jd yields
expected cost that are worse by a factor Ω(∆1/4) than the cost of policy Jd ≺ Js. ut

3 Upper bound for Bernoulli-type instances

For the class of Bernoulli-type instances introduced above, we show that taking the
number of machines and jobs into account yields an index policy that is O(m)-approximate.
W.l.o.g. let j ∈ Jd have processing time Pj = p, and j ∈ Js have processing time Pj = 0
with probability 1 − 1

l and Pj = l with probability 1
l for l > 1. Observe that the cost

caused by individually scheduling Jd or Js starting at time 0 gives a lower bound on the
cost of an optimal policy. We denote these job set-individual scheduling cost by

∑
j∈Jt E[C

0
j ]

where t ∈ {s, d}. Obviously, the sum of both also is a lower bound on the optimum cost.
Firstly, note that in case of few deterministic jobs, Js ≺ Jd is an O(1)-approximation.

Lemma 1. Js ≺ Jd is a 2-approximation for Bernoulli-type instances with nd ≤ m.

Proof. The cost of scheduling Js ≺ Jd is at most the cost of Js and the cost of one
deterministic job per machine starting at the completion of the last stochastic job on that
machine. Then, by linearity of expectation,∑

j∈J
E[Cj ] =

∑
j∈Js

E[C0
j ] +

∑
j∈Jd

E[Sj + p] ≤ 2
∑
j∈Js

E[C0
j ] + ndp ≤ 2

∑
j∈J

E[C∗j ].
�

Moreover, if there are less stochastic jobs than deterministic ones, Jd ≺ Js is O(1)-
approximate.

Lemma 2. Jd ≺ Js is a 5-approximation for Bernoulli-type instances with nd > m and
ns ≤ 2nd.

Proof. When scheduling in order Jd ≺ Js, machines start processing jobs in Js no later
than

⌈
nd

m

⌉
p ≤ 2nd

m p, when all jobs in Jd have completed. Thus, the total cost of Js is∑
j∈Js

E[C0
j ] + ns · 2

nd
m
p ≤

∑
j∈Js

E[C0
j ] + 4

∑
j∈Jd

E[C0
j ] ,

which follows from the well-known deterministic lower bound by Eastman et al. (1964).
Adding the total cost of the deterministic jobs Jd implies the 5-approximation. ut

To handle the remaining instances, recall X, the random variable counting the number
of actual long stochastic jobs. Formally, X :=

∑
j∈Js Xj with Xj := 1{Pj=l} indicating if

j ∈ Js is long. Furthermore, fix a sequence of the stochastic jobs Js and let Πi denote the
position of the ith long job in that sequence.

Lemma 3. For X and Πi defined as before and 1 ≤ i ≤ λm ≤ ns for λ ∈
{
1, . . . , bns

m c
}
,

the following holds:

(i) E[Πi | X = λm] = i
λm+1 (ns + 1) and E[Πi | λm ≤ X < (λ+ 1)m] ≤ i

λm+1 (ns + 1).
(ii) E[ns −Πm | m ≤ X < 2m] ≥ ns

4m .

Lemma 4. Js ≺ Jd is an O(m)-approximation for Bernoulli-type instances with ns >
2nd > 2m.



Sketch of proof. We analyze the performance of Js ≺ Jd by conditioning on the number X
of long jobs.

• 0 ≤X <m : There is at least one machine available for scheduling the deterministic
jobs. Hence, we loose at most a factor m w.r.t. an optimal solution using at most m
machines.
• λm ≤X < (λ+1)m for λ ∈

{
1, . . . , bns

m
c
}
: All stochastic jobs are finished at the

latest by (λ + 1)l. Beginning at time (λ + 1)l, all machines process deterministic jobs
only. Hence,∑
j∈J

E[Cj | λm ≤ X < (λ+ 1)m] ≤
∑
j∈J

E[C0
j | λm ≤ X < (λ+ 1)m] + (λ+ 1)lnd. (1)

Note that a non-clairvoyant policy does not know the positions of the long jobs. Thus,
such a policy cannot start any of the stochastic jobs coming after the (k ·m)th long
one before time k · l for 1 ≤ k ≤ λ. Thus, ns − Πkm stochastic jobs are delayed
by k · l. For λ = 1, Lemma 3 (ii) implies that scheduling only Js costs at least l ns

4m , i.e.,∑
j∈Js E[C

0
j | m ≤ X < 2m] ≥ l ns

4m . For λ ≥ 2, we can show with Lemma 3 (i) that∑
j∈Js E[C

0
j | λm ≤ X < (λ+ 1)m] ≥ λlns

4 . This bounds the extra term (λ+ 1)lnd in
Equation (1) in terms of the optimum cost.

Combining the results for the different values of X, we obtain∑
j∈J

E[Cj ] ≤ (8m+ 1)
∑
j∈J

E[C∗j ].
�

The lemmas above imply an O(m)-approximation algorithm based on index policies
taking the number of jobs and machines into account. This result for Bernoulli-type in-
stances can be slightly generalized to arbitrary deterministic jobs, i.e., Pj = pj for j ∈ Jd.

Theorem 2. There exists an O(m)-approximate index policy for Bernoulli-type instances
of P ||

∑
j E[Cj ], where the deterministic jobs may vary in size.
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1 Introduction

In this study, we analyze the scheduling problem faced by a TV manufacturer. TV
manufacturing is planned based on a make-to-order strategy and mass customization due
to diversi�ed customer demand. The manufacturer utilizes multiple heterogeneous assem-
bly/production lines that are specialized to produce TVs with di�erent features. Each
customer order is considered as a separate job, and these jobs are completed on one of the
compatible assembly lines. For a given job, only a subset of assembly lines (called compat-

ible assembly lines) can be used to complete the job, and the total processing time of a
job depends on the assembly line used for that job. A job can only be started after all the
materials (especially cell and cardboard box) are available. Before starting a new job on
an assembly line, a setup time (depending on the previous job processed and the new job
to be processed) is required to make the assembly line ready for production.

Our goal is to determine a production schedule with minimum total tardiness and ear-
liness while considering the job-assembly line compatibility, cell and cardboard box avail-
ability, the sequence-dependent setup times between jobs and the workload balance among
the assembly lines. We propose a sequential heuristic approach to address the problem.

The problem analyzed in this study is a variant of the unrelated parallel machine
scheduling problem which is extensively studied in the literature. Logendran et. al. (2007)
study the unrelated parallel machine scheduling problem with sequence- and machine-
dependent setups and unequal release times for the jobs. They further assume that each
machine has a availability constraint which sets the earliest time a machine can be used
for processing jobs. They look for a minimum weighted tardiness solution. Six di�erent
search algorithms based on tabu search are developed to identify the best schedule. Lee
et. al. (2013) also study the unrelated parallel machine setting where jobs have sequence-
and machine-dependent setups. Di�erent from Logendran et. al. (2007), they assume that
all the jobs are available at the beginning, and the objective is to minimize total tardi-
ness. The authors propose a tabu search algorithm that incorporates various neighborhood
generation methods. Similarly, Zhu and Heady (2000) and Akyol and Bayhan (2008) con-
sider unrelated parallel machine scheduling problem with sequence-dependent setups and
equal release times. Di�erent from the studies above, their objective is to minimize the
total weighted earliness and tardiness. Zhu and Heady (2000) propose a mixed integer pro-
gramming formulation, and Akyol and Bayhan (2008) develop a neural network approach
to address the problem. The main di�erences between the above mentioned studies and
the current study are machine-job compatibility restrictions and the workload balance re-
quirement. Finally, Zhang et. al. (2007) consider the unrelated parallel machine setting
with sequence-dependent setup times, unequal release times and machine-job compatibil-
ity restrictions. Their objective is to minimize the total weighted tardiness. They convert
the problem into reinforcement learning problems by constructing a semi-Markov decision
process and then apply the Q-Learning algorithm to �nd a solution. Di�erent from our



setting, they do not consider the workload balance among machines and the earliness in
the objective function.

2 Problem De�nition

We have n assembly lines and m jobs to be processed on one of these assembly lines.
We use L (:= {1, 2, . . . , n}) to denote the set of assembly lines and I (:= {1, 2, . . . ,m}) to
denote the set of jobs. Job i can only be processed on a subset of assembly lines. We use
Li to denote the set of assembly lines job i can be assigned to and Il to denote the set of
jobs that can be assigned to assembly line l. Processing time (in days) of a job depends
on the assembly line it is assigned to. We denote the processing time of job i on assembly
line l by pil. When job j is processed immediately after job i on the same assembly line,
then a sequence-dependent setup time tij is required to make the assembly line ready for
processing job j. Each job has a certain due date di by which the job has to be �nished. Job
i can be started on an assembly line after its release date, and preemption is not allowed.
Moreover, the two critical materials (cells and cardboard boxes) speci�c to each job have
to be ready before a job can be started. Hence, the earliest time a job can be started is the
maximum of the release time of the job, the available time of the cells and the available
time of the cardboard boxes required for that job. We denote the earliest start time of
job i by ri. Finally, in order to maintain a balance between the workload of the assembly
lines, the manufacturer imposes lower and upper limits on the number of jobs that can be
assigned to an assembly line. We use C1 and C2 to denote these lower and upper limits,
respectively. Our goal is to �nd an assignment of the jobs to the assembly lines and the
processing order of the jobs on each assembly line with the objective of minimizing the
total tardiness and earliness.

3 Sequential Heuristic Approach

In the proposed approach, called the Sequential Heuristic Approach (SHA), we decom-
pose the set of decisions to be made into two and make one set of decisions at each stage.
More speci�cally, in the �rst phase we assign the jobs to the assembly lines. Then, for each
assembly line we determine processing order of the jobs assigned to it. In each phase, we
make the decisions by solving mathematical models.

In the �rst phase, we determine which job is assigned to which assembly line. Our
objective in this phase is to minimize the total processing time of the jobs. We also impose
the lower and upper limits on the number of jobs that can be assigned to an assembly line.
We use the following decision variable:

zil =

{
1, if job i is assigned to assembly line l
0, otherwise.

i ∈ I, l ∈ L

The mathematical model solved in the �rst phase is as follows:

MIP-A: Min
∑
l∈L

∑
i∈Il

pilzil (1)

s.t.
∑
l∈Li

zil = 1 ∀i ∈ I (2)

∑
i∈Il

zil ≥ C1 ∀l ∈ L (3)

∑
i∈Il

zil ≤ C2 ∀l ∈ L (4)



zil ∈ {0, 1} ∀i ∈ I, l ∈ L (5)

In this model, the objective function minimizes the total processing times of the jobs.
Constraints (2) make sure that each job is assigned to an assembly line. Constraints (3)
and (4) are the lower and upper limits on the number of jobs that can be assigned to an
assembly line. Constraints (5) are the sign restrictions. By solving this model, we determine
a feasible assignment of jobs to the assembly lines. Then, in the second phase we decide
on the order jobs are processed on each assembly line. Let Al be the set of jobs assigned
to assembly line l. For assembly line l, we de�ne the following decision variables:

yik =

{
1, if job i is processed at the kth order
0, otherwise.

i ∈ Al, k ∈ {1, 2, . . . , |Al|}

xij =

{
1, if job i is the immediate predecessor of job j
0, otherwise.

i, j ∈ Al

si = start time of job i i ∈ Al

fi = completion time of job i i ∈ Al

ui = amount of tardiness for job i i ∈ Al

ei = amount of earliness for job i i ∈ Al

We determine the order of jobs for assembly line l by solving the following model:

MIP-S: Min
∑
i∈Al

(ui + ei) (6)

s.t.
∑

k∈{1,2,...,|Al|}

yik = 1 ∀i ∈ Al (7)

∑
i∈Al

yik ≤ 1 ∀k ∈ {1, 2, . . . , |Al|} (8)

yjk + yi,k−1 − xij ≤ 1 ∀i, j ∈ Al, k ∈ {2, . . . , |Al|} (9)

sj − fi + M(1 − xij) − tijxij ≥ 0 ∀i, j ∈ Al (10)

si ≥ ri ∀i ∈ Al (11)

fi − si − pil ≥ 0 ∀i ∈ Al (12)

fi − ui ≤ di ∀i ∈ Al (13)

ei + fi ≥ di ∀i ∈ Al (14)

yik ∈ {0, 1} ∀i ∈ Al, k ∈ {1, 2, . . . , |Al|} (15)

xij ∈ {0, 1} ∀i, j ∈ Al (16)

si, fi, ui, ei ≥ 0 ∀i ∈ Al (17)

In this model, the objective is to minimize the total tardiness and earliness of the jobs.
Constraints (7) make sure that each job is assigned to one of the assembly lines. Constraints
(8) guarantee that no two jobs can be assigned to the same order of an assembly line.
Constraints (9)-(10) enforce the setup times between consecutive jobs. Constraints (11)
impose the earliest start time restriction. The completion time of a job is determined by
Constraints (12). Constraints (13)-(14) determine the tardiness and earliness of each job.
Finally, Constraints (15-17) impose the nonnegativity and binary restrictions.

4 Computational Results

We test the e�ectiveness of the proposed solution approach on real-life instances. In the
real-life instances, we have 15 assembly lines dedicated for TV manufacturing and 150 jobs



to be processed on one of these assembly lines. Processing times of the jobs (depending on
the assembly line used) vary between 12 minutes and 3 days. In terms of assembly line-job
compatibility, depending on the type of the job, it can be processed on 1 up to 14 assembly
lines. On average, a job can be processed on around 8 out of 15 assembly lines. Finally,
in order to balance the workload between the assembly lines the minimum and maximum
number of jobs that can be assigned to an assembly line are set to 2 and 13, respectively.

Currently, the manufacturer uses an advanced planning and scheduling module inte-
grated with Enterprise Resource Planning (ERP) used at the company. After taking orders
from ERP software, this module provides a visual display of the orders, release dates, due
dates, etc. Then, the user assigns the jobs to the lines manually considering the setup times
and earliness and tardiness. Experience of the user is signi�cantly important in the current
practice.

We test the proposed approach on these real life instances and compare the solutions
found against the current practice in Table 1. In this table, under �SHA� column we present
the percentage improvements in the total tardiness and earliness taking the solution found
in the current practice as the reference point. We observe that the Sequential Heuristic Ap-

proach (SHA) provides signi�cant improvements over the current practice. Total tardiness
and earliness is decreased by 77.89% on average.

Table 1. Comparison between the solutions found by SHA and the current practice

Instance SHA

1 98.27%
2 55.88%
3 91.70%
4 83.39%
5 65.75%
6 75.45%
7 77.95%
8 71.92%
9 78.37%
10 80.25%

Average 77.89%
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1 Introduction

In this paper we introduce a new set of benchmark instances for the multi-mode re-
source investment problem (MRIP). The MRIP is a project scheduling problem which has
many practical applications such as construction projects or software development. It is
an extension of the resource investment problem (RIP) also known as the resource avail-
ability cost problem (RACP) where the duration and resource requests of the activities
are fixed and no mode choice is available (Möhring 1984). The goal is to find a sched-
ule minimizing the resource costs while maintaining precedence and resource constraints
as well as adhering to a given deadline. It shares some similarities with the multi-mode
resource-constrained project scheduling problem (MRCPSP) where the available resources
are fixed and the shortest possible makespan is to be determined.

Most of the existing work in the literature tackled the single-mode variant of the prob-
lem (RIP). For a good overview on heuristic and exact procedures we refer to Van Peteghem
and Vanhoucke (2015) and Rodrigues and Yamashita (2015), respectively. For the MRIP,
various heuristic approaches have been provided to tackle the problem. The problem was
introduced by Hsu and Kim (2005) who developed a heuristic that combines two pri-
ority rules to schedule the activities. In Qi et al. (2015) apply modified particle swarm
optimization to the MRIP. Both use problem instances from the PSPLIB (Kolisch and
Sprecher 1997) which were originally designed for the MRCPSP and adapt them to get
MRIP instances.

When considering the single mode case of the problem, i.e. the RIP, most of the exist-
ing work uses benchmark instances for the resource-constrained project scheduling problem
(RCSPSP) such as the PSPLIB. For problems with only one mode it works just fine to
adapt those RCPSP instances but when the multi-mode case is considered adapting MR-
CPSP instances has a major shortcoming: when the due date is set too small it can occur
that many modes of the activities become not executable (further explained in Section
3). Hence, the instances lose some of their complexity since these modes can be omitted
with simple preprocessing techniques. Another reason for proposing a benchmark dataset
for the MRIP is that all of existing approaches use different problem instances in their
computational studies which makes a comparison hard. Hence, we propose a new set of
benchmark instances such that future contributions to this problem can be easily compared
to one another (available at https://riplib.hsu-hh.de).

2 Problem description

The MRIP is defined by the following properties: A set of nonpreemptable activities
A = {0, ..., n+1}, precedence constraints E, a set R of renewable resources and a set Rn

of nonrenewable resources. For each activity i there is a setMi of modes that can be chosen

https://riplib.hsu-hh.de


for the execution of activity i. If mode m ∈Mi is chosen, activity i has duration di,m ∈ Z+

and it has a resource consumption ri,m,k ∈ Z+ for each resource k ∈ R ∪Rn. A due date
D ∈ Z+ for the makespan of the project is given. For each resource k ∈ R∪Rn the available
capacity of the resource has to be chosen and resource cost factors ck ∈ Z+ are given. The
objective is to find a precedence and resource feasible schedule that minimizes the sum of
resource costs.

min
∑

k∈R∪Rn

ck · ak (1)

s.t.
∑

m∈Mi

LSi∑
t=ESi

xi,m,t = 1 ∀i ∈ A (2)

∑
m∈Mi

LSi∑
t=ESi

xi,m,t · (t+ di,m) ≤
∑

m∈Mj

LSj∑
t=ESj

xj,m,t · t ∀(i, j) ∈ E (3)

∑
i∈A

∑
m∈Mi

LSi∑
t=ESi

xi,m,t · ri,m,k ≤ ak ∀k ∈ Rn (4)

∑
i∈A

∑
m∈Mi

min(t,LSi)∑
q=max(ESi,t−di,m+1)

xi,m,q · ri,m,k ≤ ak ∀k ∈ R,∀t ∈ T (5)

ak ≥ 0 ∀k ∈ R ∪Rn (6)
xi,m,t ∈ {0, 1} ∀i ∈ A,∀m ∈Mi, t = ESi, . . . , LSi (7)

The mathematical model presented in (1)–(7) is an adaptation of a model for the
MRCPSP proposed by Talbot (1982). We define binary decision variables xi,m,t which are
set to 1 if and only if activity i starts in mode m in period t (see (7)) and real-valued
decision variables ak which represent the available capacity of resource k (see (6)). For
each activity i we calculate a lower bound ESi and an upper bound LSi for its possible
starting period using forward and backward calculation (FBC) (Kelley 1963).

The objective function (1) minimizes the sum resource costs. Equation (2) makes sure
that for every activity i exactly one mode and one starting time is assigned. With con-
straint (3) we ensure the precedence constraints. Constraints (4) and (5) model the non-
renewable and renewable resource requirements, respectively. The renewable resource can
represent machines or workers as their available amount replenishes every time period. We
also consider nonrenewable resources. They are a powerful tool for the decision maker to
model the budget of the project or the use of external work force.

3 Instance Generation

We group the benchmark instances in three datasets with instances sharing the same
number of activities, namely MRIP30, MRIP50 and MRIP100. The generated instances
have the following characteristics: number of activities |A|, number of modes per activity
|M |, number of renewable resources |R|, due date factor θ, order strength OS and resource
factor RF . Here, order strength measures the fraction of precedence relations in E com-
pared to the total number of possible relations and, hence, is an indicator if the precedence
structure of the project is more parallel or more serial (Mastor 1970). The resource factor
value is the average of how many resources are actually consumed for every mode of all the
activities. Table 1 displays the values that are used. For every parameter combination we



Table 1. Parameter values

Parameter Values
|A| {30, 50, 100}
|M | {3, 6, 9}
|R| {2, 4, 8}
θ {1.2, 1.4, 1.6, 1.8, 2}
OS {0.25, 0.5, 0.75}
RF {0.5, 1}

generated 5 instances, giving us in total a number of 4,050 instances. As done in the liter-
ature, the parameter θ is used to compute the due date of the project as in the following
equation (activity n+ 1 is the dummy end activity that marks the end of the project and
has a duration of 0):

D = Round(θ · ESTn+1) (8)

For smaller values of θ many modes can be infeasible. That means that their earliest
finish time (earliest start plus duration of the mode) is larger than their latest finish time
(w.r.t to the latest start of their successors in order to not violate the due date constraint).
This can happen when the due date is relatively small compared to the earliest start time
of the dummy end activity end the fact that the minimal durations of the activities are
used when calculating the earliest and latest start times with FBC. When, for example, we
use θ = 1 then the durations of modes can not differ for activities on the critical path or
all modes with a duration higher than the minimum duration are infeasible (w.r.t to the
due date constraint). Hence, we use only values greater or equal than 1.2 for θ and apply
a repair mechanism when infeasible modes are encountered.

For every instance we have only one nonrenewable resource since it can be shown that an
instance with multiple nonrenewable resources can be transformed in polynomial time into
an instance with just one nonrenewable resource. An optimal solution for the transformed
instance can be translated into a feasible optimal solution of the original instance and vice
versa (the concept of a polynomial-time reduction will be given in the presentation due to
space limitations).

Next, we describe how we actually computed an instance with the desired properties. We
used the network generator RanGen (Demeulemeester et al. 2003) to generate an activity-
on-the-node network with the desired number of activities and the desired order strength
value. Next, we draw for every activity i and all its modes m ∈ Mi the duration di,m as
a discrete uniform distributed random number U{1, 10}. The resource requirements ri,m,k

for every resource k ∈ R∪Rn are also drawn from U{1, 10}. If the value of RF = 0.5, then
we set arbitrarily half of the renewable resource requirements of each mode to 0. After all
the resource requirements and the duration for an activity is determined, we check if there
are dominated modes. A mode is dominated if there is another mode with shorter or equal
duration and lower or equal resource requirements for all resources. If a dominated mode
occurs, the duration and resource requirement values of the dominated mode as well as
the other mode that is responsible for the domination get redrawn. This is repeated until
each activity has no dominated modes. Then, we calculate the earliest start times (EST)
with the forward pass technique and the due date D of the project as in (8). With D as
an upper bound for the completion of the project we can use a backward pass to compute
latest finish times (LFT) for every activity. We use the EST and LFT to check for infeasible
modes. A mode m of activity i is infeasible if the following inequality does not hold:

ESTi + di,m ≤ LFTi (9)



If an infeasible mode is encountered, the values for this mode get redrawn. Since the minimal
durations can change, we compute EST , D and LFT again and repeat this procedure until
no mode is infeasible.

We choose to set the cost factors ck to be 1 for all resources in this benchmark set.
Setting them to another random number or multiplying the resource requirements for the
respective resource by that random number would basically result in the same outcome.
In this benchmark set we get the randomness for the resource allocation by the resource
consumption and the duration of the modes. For future work it could be interesting to
analyse different cost structures or distributions (e.g., cheap resource types versus expensive
resource types which are also considered in the design of the modes).

4 Computational Experiments

We tested the new instances with a relatively simple iterated local search (ILS) and
implemented the mathematical model displayed in (1)-(7) as a integer program (IP) in
Gurobi. Results are presented at the conference due to space limitations but show that the
proposed instances are quite challenging and need further investigation by means of more
advanced metaheuristic procedures.

5 Conclusion

In this work we argue why benchmark datasets for the multi-mode resource investment
problem are needed and which specific features need to be considered regarding the multi-
mode case. We introduce a procedure to obtain instances with no dominated or infeasible
modes and provide those instances such that future research is easier to compare. First
experiments show that the instances at hand are challenging and need further investigation
by exact and heuristic approaches.
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1 Introduction

The flow shop problem (FSP) has been one of the most well studied problems in schedul-
ing literature (Vallada et al., 2015). Nevertheless, less research has been conducted for the
stochastic case (González-Neira et al., 2017; Gourgand et al., 2000). Li and Ierapetritou
(2008) have mentioned that the fact of designing systematic ways to take into account
stochasticity is as important as the model itself.

Regarding the objective function, four aspects must be mentioned: two related with
quantitative decision criteria, one with qualitative decision criteria and one with robust-
ness of the solutions obtained. Firstly, the makespan for the deterministic case, and the
expected makespan for the stochastic counterpart, have been the most studied measures
(Gourgand et al., 2000; Vallada et al., 2015). However, other criteria that consider due date
related measures are key objectives in today competitive markets, as they may be measures
of customer service level. Moreover, the adoption of just-in-time (JIT) measures such as
earliness/tardiness has been object of interest in the past two decades, because earliness
may cause obsolescence, more inventory holding costs, requirement for more storage space
(Chandra et al., 2009) among others.

Secondly, the fact of consider various objectives simultaneously is natural in real-life
problems (Yenisey and Yagmahan, 2014). Still, most of the literature considers only single
objective problems.

Thirdly, in the scheduling literature, almost all researches, with very few exceptions,
have considered only quantitative decision criteria but, as in other optimization problems,
qualitative criteria are important and can reduce the gap between theory and practice.
Chang and Lo (2001) and Chang et al. (2008) studied a multi-criteria job shop in which
strategic importance of customers was considered as qualitative criteria. The former hy-
bridized a genetic algorithm, tabu search, analytic hierarchy process (AHP) and fuzzy
theory to solve the problem. The later used a hybridization of ant colony algorithm and
AHP. González-Neira et al. (2016) minimized expected costs of tardiness as quantitative
criteria and strategic customer importance as qualitative criteria in a stochastic hybrid
FSP. This last study employed a method based on stochastic multicriteria acceptability
analysis, hybridized with a GRASP and a Monte Carlo simulation to deal with both type
of criteria.

Fourthly, research on scheduling under uncertainties has taken mainly two approaches:
the stochastic approach, in which parameters are modelled with probability distributions
with the goal of minimizing the expected value of a selected measure, and the robust



approach, in which uncertain parameters are modelled with intervals and the schedule
obtained is more stable and suffer less variations under uncertainty. Nonetheless, the com-
bination of both approaches has not been addressed. It is known that if an enterprise
collects all data of their production, in short time, it may have sufficient data to estimate
accurately distribution probability of uncertain parameters. By having this probability dis-
tribution, the robust schedule obtained can be more adjusted than other schedules in which
uncertainties are modelled with intervals.

To the best of our knowledge, there is not a work that includes simultaneously the
analysis of a JIT environment with stochastic parameters, and quantitative and qualita-
tive criteria to obtain robust solutions. Hence, the current work proposes a multicriteria
optimization approach to solve a stochastic PFSP that includes both, quantitative and
qualitative decision criteria. As quantitative objectives, the expected earliness/tardiness
E[E/T] and the standard deviation of earliness/tardiness SD(E/T) are addressed; the lat-
ter to obtain more robust schedules. As qualitative measure, the expected fulfilment of
customer importance (E[CI]) of jobs, that gives priority to the most important jobs for the
company, is considered.

2 Proposed solution approach

The proposed methodology consists of a simheuristic that integrates Monte Carlo simu-
lation into an GRASP metaheuristic (Resende and Ribeiro, 2010), hybridized with pareto
archive strategic evolution algorithm (PAES) (Knowles and Corne, 2000) to deal with
multiple objectives. Additionally, the AHP methodology is integrated to qualify all Pareto
solutions under different weight vectors for the selected criteria.

Special variations of GRASP have been proposed to solve multi-objective problems.
Those are combinations of pure and combined strategies for both, construction and local
search phases (Martí et al. 2015). Pure strategies are those in which only one objective
function guides each construction and the entire local search. In this paper, a GRASP
with a pure strategy for construction stage is used. Local search does not need a strategy
because it integrates the PAES algorithm to construct the Pareto Archive.

Two greedy functions were considered for the construction phase. EDD rule to deal
with earliness/tardiness objective, and a penalization assigned to each job depending on
its customer importance and position in the sequence, to deal with qualitative objective (see
Table 1). The reason for penalizing the accomplishment of customer importance in relation
with the position in the sequence, is because it is desired that a job of a very strategic
and important customer for the company be processed in the first positions rather than
in the final positions of the sequence. Likewise, it is undesirable to schedule a job of a not
very much important customer in the first positions, because it would be stolen a position
that should be taken by a job of a customer of greater importance. Obviously if the job is
not tardy it doesn’t matter which position of the sequence it occupies. Considering these
aspects, the penalization scores were defined with the following criteria: i) a job that is
not tardy has a score of zero; ii) if a job is tardy its penalization is greater if the customer
importance is high, and lower if its customer importance is low; iii) a job penalization
increases if job is taking the place of a job that has greater or lower customer importance.
Table 1 presents an example for an instance of 10 jobs. For our experiments we supposed
that there are 5 degrees of customer importance, where 1 is assigned to the most important
clients and 5 to the worst ones. For the instances tested in this project, a random assignment
of the customer importance for each job was done following the probabilities indicated in
Table 2. Of course this scale from 1 to 5 for importance customer, the and probability of the
importance level were established just for the purpose of testing the methodology. In real



cases, the assignment of customer importance will not be probabilistic but deterministic
according with the decision maker.

Table 1. Penalizations for position in the sequence depending on customer importance

Job 5 4 10 1 3 7 2 6 9 8
/ Customer importance 1 2 2 2 3 3 4 4 4 5

Job position in sequence 1 1 5 5 5 7 7 7 7 7 5
2 6 1 1 1 4 4 5 5 5 4
3 6 1 1 1 4 4 5 5 5 4
4 6 1 1 1 4 4 5 5 5 4
5 11 5 5 5 1 1 3 3 3 3
6 11 5 5 5 1 1 3 3 3 3
7 16 9 9 9 4 4 1 1 1 2
8 16 9 9 9 4 4 1 1 1 2
9 16 9 9 9 4 4 1 1 1 2

10 21 13 13 13 7 7 3 3 3 1

Table 2. Probabilities of customer importance occurrence

Customer importance 1 2 3 4 5
Probability of occurrence 8% 12% 20% 28% 32%

The main idea of the construction procedure is alternating the two different greedy
functions at each iteration of GRASP. Therefore, suppose that the procedure begins with
EDD for the first iteration. Next it uses customer importance for iteration 2, and repeats
EDD for iteration 3, and so on. The RCL set is defined as the subset of jobs for which greedy
function values are in the first 10% of the total range of greedy function values. Then, a
job is randomly selected from RCL to form part of the partial solution. The procedure
continues until all jobs have been scheduled and then, the local search begins. Local search
phase consists of 2-optimal interchanges between jobs.

To deal with the stochastic nature of the problem, a Monte-Carlo Simulation is embed-
ded into GRASP. Each sequence obtained in both, construction and local search phases,
is simulated with the required number of runs to give an accurate confidence interval of at
least ±1% around each of the three objective functions, following the procedure proposed
by Framinan and Perez-Gonzalez (2015).

Once these three measures are obtained for each solution, the solution is evaluated to
decide if it should enter in the Pareto Archive or not. If it enters, the other solutions already
saved in the Pareto Archive are evaluated to determine if they remain in the Archive or
not. If the solution does not enter in the Pareto Archive, it is discarded. This is done
according PAES method. A GRASP iteration ends when no interchanges can enter to the
Pareto Archive and then, a new iteration begins. The simheuristic stop time is established
as: number of jobs × number of machines × 1s. Once each Pareto frontier is obtained, we
scored all Pareto sequences with the usage of AHP methodology. We used six different
vectors of criteria weights (Table 3) for the three selected measures. These criteria weights
resulted from an AHP qualification process in which we scored an objective function versus
another, in the scale from 1 to 9, as indicated by AHP procedure. One example of a vector



of criteria weights is shown Table 4. Then, from each weight vector we could select the best
solution among the Pareto frontier solutions. In order to compute the matrix of option
scores, for each pair of sequences s1 and s2, we divided the expected earliness/tardiness of s1
by the expected earliness/tardiness of s2, so if the division was > 1 the earliness/tardiness
of s1 was worse than the earliness/tardiness of s2 and vice versa. Similar divisions were
done for the other two objective functions (standard deviation of earliness/tardiness and
customer importance).

Table 3. Vectors of criteria weights used for qualification of Pareto Solutions

Weights vector
Objective Function 1 2 3 4 5 6

E[E/T] 66.67% 22.22% 66.67% 22.22% 11.11% 11.11%
SD(E/T) 22.22% 66.67% 11.11% 11.11% 66.67% 22.22%

CI 11.11% 11.11% 22.22% 66.67% 22.22% 66.67%

Table 4. Example of priority vector

AHP qualification
Objective E[E/T] SD(E/T) CI Resultant
Function weight vector
E[E/T] 1 3 6 66.67%

SD(E/T) 1/3 1 2 22.22%
CI 1/6 1/2 1 11.11%

3 Analysis of Results

Two probability distributions and two coefficients of variation were selected to model
both, the stochastic processing and setup times. The first 60 Taillard’ benchmark instances
were taken to test the methodology; this corresponds to 960 Pareto frontiers. With the
application of the AHP method, we selected the best solution for each one of the 6 different
vectors of criteria weights, from each Pareto frontier. That means a total of 5760 solutions,
each of which exhibits an AHP score and a value for the three objectives. Three ANOVAs
were executed to analyse jointly the effect of seven factors in the three selected objective
functions (E[E/T], SD(E/T) and E[CI]). The factors and their levels were: probability
distribution of processing times (PDPT) (lognormal -lgn- and uniform -unf-), coefficient
of variation of processing times (CVPT) (0.25 and 0.50), probability distribution of setup
times (PDST) (lgn and unf), coefficient of variation of setup times (CVST) (lgn and unf),
vectors of criteria weights of AHP (WV) (1 to 6), number of jobs (20 and 50) and number
of machines (5, 10 and 20).

According to the results, all main effects are statistically significant in the three mea-
sures, and at least for one objective function the double interaction effects are also signifi-
cant (P-values < 0.05). The Main effects plots can be seen in Figure 1. It shows that the
WV discriminates the Pareto solutions, facilitating to the decision maker the selection of
a solution from the Pareto Frontier. Also, it can be seen that for E[E/T] and SD[E/T],



the coefficients of variation of both, setup and processing times, affect the response sub-
stantially by incrementing the three objectives as the coefficients of variation increase. The
same happens with E[CI] but not in the same degree. Additionally, the measures tend to
be greater for lognormal probability distribution than for the uniform distribution. This
shows the importance of making an accurate fitting of probability distribution to obtain
adjusted robust measures.

Future work could be directed to analyze another probability distributions and coef-
ficient of variations. In fact, it should be evaluated the case when the processing time
probability distribution of each job has a different variation coefficient, which is normal in
real cases. Finally, another qualitative criteria should be incorporated in the analysis.
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Fig. 1. Main effect plots: (a) for E[E/T], (b) for SD(E/T) and (c) for E[CI].
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1 Schedule Delay Analysis

The analysis of the schedule delays is a permanent problem of practical application in
project management. From delays can depend the final outcome and success of projects,
particularly where large sums are at stake and time and cost are very sensitive variables,
often dependent on each other. In client-supplier or owner-contractor relations, the schedule
delays usually represent a very important issue, often undermining the commercial outcome
of the whole project. In fact delay claims are a very well-known issue which is often to
be managed in order to settle lengthy negotiations and even juridical cases, tracing to
responsibilities and monetary compensations.

The present work tackles the problem of schedule delays, linking to literature already
present on the topic, and contributing to solutions already published. We finally imple-
ment an algorithmic method, referenced to as “float banking” which can be of interest to
practitioners and stakeholders in the field of project management.

2 Methods and literature review

Literature on schedule delay analysis is plenty of attempts to produce rational ways to
cope with the problem of sharing delay responsibilities between the project actors, namely
Owner and Contractor(s). Literature on the subject has become to appear in the 90s – e.g.
Alkass (1996) – and is still flourishing.

A conventional way to allocate delaying events encountered on a project is to classify
them according to their origin by the responsible party or event – either Owner, Contractor
or Force Majeure – and whether the same events are excusable, compensable or not; which
also should take into account the so-called “snow ball” effect of delay perturbations. In
summary one finds basic types of delays so defined:

EC: owner-caused excusable compensable
EN: owner-caused excusable but not compensable
NN: contractor-caused neither excusable nor compensable.

In particular such effects and originating events can be the subject of extensive treat-
ment in contractual clauses as well as their “correct” analysis and allocation give often rise
to hard claims and juridical cases between Owner and Contractor, due to their financial and
contractual impacts. The subject among others has originated a specific discipline known
as Forensic Schedule Delay, where the so-called Schedule Delay Analysis (SDA) plays a
major role, in the hands of scheduling (e.g. critical path analysis) arbitration and project
management experts, e.g. Pickavance (2010).

In this framework a number of delay analysis methods have been proposed, such as:



- As-planned vs as-built
- Impacted as-planned
- As-planned But for
- Collapsed as built,
- “Windows” analysis, and
- Time Impact Analysis

for which the reader is invited to refer to respective literature, e.g. Davison and Mullen
(2009), Keane and Caletka (2015). Furthermore professional associations like Society of
Construction Law (SCL, 2002) and Association for the Advancement of Cost Engineering
International (AACEI, 2007) have published seminal references on the subject. For the
present discussion we particularly refer to the paper by Braimah (2013), which also provided
us the case study here developed. The topic remains relatively complex to tackle when
confronted with real case problems, though foundation theory has progressed and can be
helpful to assist claimants and defendants in the courts. Among more specific issues arising
on this subject one may recall delay concurrency, float ownership, acceleration and “pacing”
(i.e. the slowing down work activities dependent on another party’s lateness).

The most relevant approaches of analysing schedule delays appear the last two in the
above cited list – Windows and Time Impact analysis – which have most inspired this
paper. The aim is to improve methods which can be used in real-time and are efficient and
convincing in providing logical solutions, also aligned to legal practices.

2.1 Time Impact Analysis

Time Impact Analysis (TIA) method applies re-scheduling at each specific delay or
delaying event, the schedule being updated to a possibly new completion date, including a
new or more critical paths. A picture of the project is developed each time it experiences
a disturbing event, imputing delay responsibilities as soon as they occur, which can also
steer management to undertake timely control actions.

In traditional literature authors report that the method may not be practical due to the
large number of delay events/causes and the laborious re-planning work required. However
the writing authors believe that the technique is now useable thanks to modern scheduling
tools and project management architectures which are taking place in the construction
field applications and yard control offices, where relatively complex projects should not be
dispensed any more. Moreover real-time delay assessment can consolidate project informa-
tion and respective performance either by Owner, Contractor or impacts caused by Force
Majeure (so-called acts of God).

Finally TIA can become standard method for the problem in question, its “algorithmic”
results being less prone to questioning vs. other methods that can provide more approxi-
mate solutions and different results on the same problem, as exemplified in Braimah (2013).
In particular when a TIA analysis is performed following a delaying event, this can im-
pact a large number, theoretically all other project activities, changing their floats and/or
determining a new critical path to the forecasted completion date. In this application we
investigate the effects of changing the single float values of other activities, while tracking
responsibilities of the parties concerned – Owner, Contractor and Force Majeure – and
improving the attention so far dedicated to float management by previous literature.

In our conceptual model an activity float is like an economic reserve or resource which
can be impacted by another activity behaviour, up to being nullified or forced to become
negative, where a project delay is to occur1. To this aim a model from economics is bor-
rowed. Assuming each activity has an elementary account, where the float plays like reserve
1 Assessment of negative floats and trends is a customary way to analyse schedule delays phe-

nomena, as discussed for instance by Keane and Caletka (2015).



funds, these may be decreased or increased by other activities behaviors, representing cred-
its and debts, alike in accounting practice. In particular assuming that floats are owned by
the responsible party, Owner or Contractor, any values changed by the “same” party are
of no charge, while e.g. a decreased float by the other party can represent a future credit.
Total time budget is eventually synthesized on the project account, say completion date or
total delay.

2.2 Proposed algorithm and method

The management of floats for each activity means recording of their evolution during
the project and re-assigning pro-quota their reduction/gain to the respective party. In par-
ticular during the execution of a project, float possessed by an activity may increase or
decrease due to other activities behaviour or external events. For example, some activ-
ity may become critical, so being penalized in future progress without having any direct
responsibility.

The present implementation manages this accounting by introducing an appropriate
data structure, defined as float bank, which is updated during the project dynamics and
trace delays back to their original causes and responsible parties. Any time an activity
duration and hence its float is changed, float banking updates the relevant information,
such as event causing the float change and its responsible party. Besides zeroing, floats can
increase, decrease and become negative. Moreover, following each event, one updates the
history of all floats and activities concerned, can trace the changes of the critical path(s)
and record whether the activities become critical or hypercritical (negative total float),
with additional project delay.

In practice one can evaluate the impacts due to: - Owner (e.g. impoverishing his or some
contractor safety margins); - Contractor (e.g. reducing project efficiency and escalating
costs or liquidated damages); - Force majeure, with no direct responsibility on the project
performance, but accepted as act of God. Therefore at any moment one can have an account
of all integral float values and originating causes, like a bank statement.

2.3 Implementation method

The general logic of the method here implemented can be outlined as follows:

From project start
For each detected delaying event in chronological order:

compute the impact on the activity and all other activities possibly impacted.
determine the event responsibility (Owner, Contractor, FM) of all changes.
These steps apply the CPM scheduling algorithm, recomputing the critical path and
updating the float bank.
Make available the new information to project and contractual management rules.

(Recycle for new delay event until the project end).

The specific algorithmic procedures and required data administration cannot be fully
described here due to space limitation. A more complete paper will be made available on-
line [see ScheDA in References] and is planned to be submitted to a project management
journal.

As already mentioned we only report here the results obtained with the case study by
Braimah (2013) while other cases from other literature on the subject have also positively
been tested for validation.



3 Case study

From the referenced case study, where a planning network of 12 activities is defined
and 10 delaying events of various timing impact are injected during the project course,
one obtains the results in Table.1. In this exercise the project original duration of 40 days
was delayed by 11 days, with delays justified (EC, NN) according to classification already
reported.

Table 1. Summary of delay analysis results for the case study according to different methodologies

Delay analysis methodology Delay
EC NN

As-planned vs As Built 9 2
Impacted As-planned 6 8
As-planned But for:

a) Contractor’s point of view 4 7
b) Owner’s point of view 9 2

Collapsed As-built 6 5
Window Analysis 7 4
Time Impact Analysis 6 5

One can see the summary of delay responsibility allocation, shared between EC and NN,
as produced by the different methods, taken from the cited reference, Braimah (2013), with
the additional and last row (bolded italics) obtained by our application. As already said,
different and more heuristics based methods may provide different results; in particular
one method (Impacted as Planned) gives a total delay greater than the actual one.

Besides aligning to the various approaches present in the literature, the method here
developed provides additional focus on the float dynamics and float management modelling,
which, according to our knowledge, is not so explicitly developed in previous papers. The
more recent paper on the subject appears to be Yang and Kao (2012) whose algorithmic
mechanics is however different from ours. Here and by previous authors – particularly
Hehazy and Zhang (2005) – the question of how selecting the rescheduling window is
discussed, in order to be efficient and not losing information. While rescheduling “every
day” may seem more correct and safe, other considerations may induce selecting different
window intervals, e.g. for taking into account “complete” activity influences and better
considering the acceleration and slowing down effects of some activities.

4 Conclusions and future development

In case of project and contract claims, the computer-assisted methods can provide more
efficient, transparent and rational mean to settle disputes than clumsy and difficult ways to
reconstruct the work history from yard journal, records etc. The algorithmic method here
developed can be the core of a more general approach for evaluating the schedule delays
on field project applications. The implementation of the proposed model using examples
form literature and other published cases is providing positive results. More difficult is to
get access, or authorization for publication of real life applications, which often are related
to legal cases and therefore are protected by privacy or difficult to disclose.

In principle floats is a resource that should be given due consideration in contractual
arrangements. Among the relationships that the method of float banking may have with



other project management fields of interest, we recall the Critical Chain Method (CCM)
where the concept of buffer management is introduced, see e.g. Leach (2000); in this regard
the float accounting can be considered to improve the concept of buffer control introduced
in CCM.

Once implemented, the system can better support ways to settle claims, arbitration and
other procedures between claimant and defendant, resorting to court as the last chance.

Specifically, we are developing the method as a web-based tool that can be made avail-
able and demonstrated for gaining feed-back from prospective users. This project is nick-
named ScheDA (Scheduling Delay Analysis), which means in Italian language a recording
or reporting sheet, based on some template or standard format. The same term originates
from late Latin “schedula” or strip of paper, and later meaning a “note” or something
to use as reference. Before scheda meant one of the strips forming a papyrus sheet, also
literally in Greek “skhida” (σχέδη), that is piece of wood, table, paper or small notebook.
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1 Introdution

In a mahine sheduling problem with non-renewable resoures, besides the mahine(s),

there are non-renewable resoures, like raw materials, energy, or money, onsumed by the

jobs. The non-renewable resoures have some initial stok, and they are replenished over

time in given quantities. The objetive funtion an be any of the widely-used optimization

riteria in mahine sheduling problems, see e.g., Carlier (1984) or Györgyi and Kis (2017).

Now, we onsider a single mahine variant with a single non-renewable resoure. For-

mally, there is a single mahine, a set of n jobs J , and a non-renewable resoure. Eah job

j has a proessing time pj > 0, a weight wj > 0, and resoure requirement aj ≥ 0. The

non-renewable resoure has an initial stok b̃1 ≥ 0 at time u1 = 0, and it is replenished

at q − 1 distint supply dates 0 < u2 < · · · < uq in quantities b̃ℓ ≥ 0 for ℓ = 2, . . . , q.

However, the total demand does not exeed the total supply, i.e.,

∑
j∈J aj ≤

∑q

ℓ=1 b̃ℓ. The

umulative supply up to supply date uℓ is bℓ =
∑ℓ

k=1 b̃k. A shedule spei�es the starting

time Sj of eah job j ∈ J ; it is feasible if (i) no pair jobs overlap in time, i.e., Sj1+pj1 ≤ Sj2

or Sj2 + pj2 ≤ Sj1 for eah pair of distint jobs j1 and j2, and (ii) for eah time point t,
the total supply until time t is not less than the total onsumption of those jobs starting

not later than t, i.e., if uℓ ≤ t is the last supply date before t, then
∑

j∈J:Sj≤t aj ≤ bℓ.
An example problem along with a feasible shedule is depited in Figure 1. There are 5

jobs represented by 5 retangles. For eah job j, the width of the orresponding retangle

indiates its proessing time, while the resoure requirement aj is provided in the retangle.

Further on, there is an initial supply of b̃1 = 3 at time u1 = 0, and two more supplies at u2

and u3 with supplied quantities b̃2 = 4 and b̃3 = 6, respetively. In the depited shedule,

job j1 annot start earlier, sine it requires 2 units from the resoure, but there is only

b̃1 + b̃2 − a2 − a5 − a3 = 1 unit on stok before the supply arrives at u3.

Fig. 1. A feasible shedule (n = 5, q = 3)



We aim at �nding a feasible shedule S minimizing the total weighted ompletion time∑
j∈J wjCj , where Cj := Sj +pj denotes the ompletion time of job j. Using the standard

α|β|γ notation, we denote our problem by 1|nr = 1|
∑

wjCj , where 'nr = 1' indiates that
we have only one type of non-renewable resoure.

1.1 Previous results

The �rst results of the area are from the 1980s. Carlier (1984) presented several omplex-

ity results for variants where the makespan, the maximum lateness, or the total ompletion

time have to be minimized in single and parallel mahine environments. Slowinski (1984)

examined a preemptive version of the problem for parallel mahines. Toker et. al. (1991)

and Xie (1997) applied redutions to the two-mahine �ow shop problem for variants where

the supplies arrive uniformly over time. Grigoriev et. al. (2005) presented easy approxi-

mation algorithms for the makespan and the lateness objetive. Gafarov et. al. (2011)

proved several omplexity results for various objetive funtions. Györgyi and Kis (2014)

presented approximation shemes for the makespan objetive in ase of one resoure. This

was extended for a onstant number of resoures by Györgyi and Kis (2015b) and for par-

allel mahines by Györgyi and Kis (2017) and by Györgyi (2017). Györgyi and Kis (2015a)

proved redutions between the makespan minimization problem with two supply dates and

variants of the Knapsak Problem. The most relevant anteedent of this researh is Kis

(2015), whih onsidered the same objetive funtion and presented an FPTAS for the

problem with q = 2.

1.2 Preliminaries

This paper examines variants with more supplies, where we an state job independent

onnetions among the proessing times, the resoure requirements and the weights. If

these onnetions are strong enough we an �nd easy ordering rules that yield optimal

shedules, see Table 1. In the next setions we deal with two other variants.

Table 1. Easy variants of 1|nr = 1|
∑

wjCj .

Variant Optimal shedule

pj = aj = ā non-inreasing wj order

pj = wj = 1 non-dereasing aj order

aj = wj = 1 SPT order

wj = w̄, pj = aj SPT order

aj = ā, pj = wj LPT order

Notie that SPT and LPT means that jobs are ordered in inreasing, respetively,

dereasing proessing time order. In the orresponding algorithm, jobs are simply sheduled

in inreasing (SPT) / dereasing (LPT) proessing time order. If the resoure level is below

the requirement of the next job, we simply wait until enough supply arrives.

While the SPT order gives the optimal shedule for the problem 1||
∑

Cj (all job weights

are 1), the LPT order is originally used in a list sheduling algorithm for the parallel

mahine problem P ||Cmax where it yields a 4/3-approximation algorithm.

2 The problem 1|nr = 1, pj = aj = wj |
∑

wjCj

Surprisingly, this very restritive ase is already NP-hard:



Theorem 1. The problem 1|nr = 1, q = 2, pj = aj = wj |
∑

wjCj is weakly NP-hard, and

1|nr = 1, pj = aj = wj |
∑

wjCj is strongly NP-hard.

These omplexity results are new, formerly only the NP-hardness of the variant 1|nr =
1, q = 2|

∑
Cj (see Kis (2015)) and that of 1|nr = 1|

∑
Cj (Carlier (1984), Kis (2015))

were known.

However, we ould derive a 2-approximation algorithm for it.

Theorem 2. Sheduling the jobs in LPT order is a 2-approximation algorithm for 1|nr =
1, pj = aj = wj |

∑
wjCj .

3 A PTAS for 1|nr = 1, pj = wj , q = const|
∑

wjCj

In this setion we desribe an PTAS (polynomial time approximation sheme) for 1|nr =
1, pj = wj , q = const|

∑
wjCj . Notie that the resoure onsumption of the jobs is job-

dependent, but the number of supplies is a onstant, not part of the input. A PTAS is a

family of algorithms {Aε}ε>0, suh that for eah ε > 0, Aε is an (1 + ε)-approximation

algorithm for the problem with a omplexity polynomially bounded in the size of the input.

Let Psum :=
∑

j pj be the total proessing time of the jobs. Let ∆ := 1 + (ε/q2).
We will guess the total proessing time of those jobs sheduled after uℓ for ℓ = 2, . . . , q,
where a guess is a q − 1 dimensional vetor of non-inreasing numbers P g

2 , . . . , P
g
q , i.e.,

P g
ℓ ≥ P g

ℓ+1 ≥ 1 for ℓ = 2, . . . , q − 1, and eah P g
ℓ is of the form ∆t

for some integer

t ≥ 0 with ∆t ≤ Psum. Also �x P g
1 := Psum. For any guess, de�ne the set of medium

size jobs Mℓ := {j | pj ≥ (∆ − 1)P g
ℓ }. Note that Mq ⊇ Mq−1 ⊇ · · · ⊇ M1, sine

P g
q ≤ P g

q−1 ≤ · · · ≤ P g
1 . Let Sℓ be the omplement of Mℓ, i.e., Sℓ := {j | pj < (∆− 1)P g

ℓ }.
Clearly, Sq ⊆ Sq−1 ⊆ · · · ⊆ S1. After these preliminaries, the PTAS for 1|nr = 1, pj =
wj , q = const|

∑
wjCj onsists of the following steps:

1. Consider eah possible guess (P g
2 , . . . , P

g
q ) of the total proessing time of those jobs

starting after the supply dates u2, . . . , uq, respetively. For eah possible guess de�ne

the sets of jobs Mℓ and Sℓ (see above), and perform the steps 2-5. After proessing all

the guesses, go to Step 6.

2. For eah ℓ = 1, . . . , q, hoose at most 1/(∆ − 1) medium size jobs from Mℓ (sine the

sets Mℓ are not disjoint, are must be taken to hoose eah job at most one). For eah

possible hoie (T1, . . . , Tq) of the medium size jobs (where Tℓ ⊆ Mℓ), perform steps

3-5. After evaluating all hoies, ontinue with the next guess in Step 1.

3. Determine a shedule of the medium jobs. That is, for ℓ = q, . . . , 2, shedule the jobs

in Tℓ in any order after uℓ ontiguously, and if neessary, push to the right the jobs in⋃q

ℓ′=ℓ+1 Tℓ′ .

4. Let J u
0 be the set of unsheduled jobs. For ℓ = q, q − 1, . . . , 1, repeat the following. In

a general step with ℓ ≥ 2, pik jobs from J u
q−ℓ ∩ Sℓ in non-inreasing aj/pj order until

the seleted subset Kℓ satis�es p(Kℓ)+ p(Tℓ) ≥ P g
ℓ − (1/∆)P g

ℓ+1, or if no more jobs left,

Kℓ = J u
q−ℓ ∩ Sℓ. In either ase, insert the jobs of Kℓ in any order after uℓ and after all

the jobs in T1 ∪ · · · ∪ Tℓ−1, and before all the jobs in Tℓ ∪
⋃q

ℓ′=ℓ+1(Kℓ′ ∪ Tℓ′) (pushing
some of them to the right if neessary). Let J u

q−ℓ+1 := J u
q−ℓ \ Kℓ and ontinue with

ℓ − 1 until ℓ = 1 or no more unsheduled jobs are left. For ℓ = 1 just shedule all the

remaining jobs from time u1 = 0 on (pushing the already sheduled jobs to the right,

if neessary). If the omplete shedule obtained satis�es the resoure onstraints, then

ontinue with Step 5, otherwise with the next hoie of medium size jobs in Step 2.

5. Compute the objetive funtion value of the omplete shedule obtained in step (4), and

store this shedule as the best shedule if it is the �rst feasible shedule or if it is better

than the best feasible shedule found so far. Continue with next hoie of medium size

jobs in Step 2.



6. Output the best shedule found in the previous steps.

Theorem 3. The proposed algorithm is an PTAS for 1|nr = 1, pj = wj , q = const|
∑

wjCj .

Aknowledgements

This work has been supported by the National Researh, Development and Innova-

tion O�e - NKFIH grant K112881, and by the GINOP-2.3.2-15-2016-00002 grant of the

Ministry of National Eonomy of Hungary.

Referenes

Carlier J., 1984, �Problèmes d'ordonnanement à ontraintes de ressoures: algorithmes et om-

plexité", Université Paris VI-Pierre et Marie Curie, Institut de programmation

Gafarov E.R., A.A. Lazarev and F. Werner, 2011, �Single mahine sheduling problems with

�nanial resoure onstraints: Some omplexity results and properties", Math. Soial Si.,

Vol. 62, pp. 7-13.

Grigoriev A., M. Holthuijsen and J. van de Klundert, 2005, �Basi sheduling problems with raw

material onstraints", Naval Res. Logist., Vol. 52, pp. 527-553.

Györgyi P., 2017, �A PTAS for a resoure sheduling problem with arbitrary number of parallel

mahines", Oper. Res. Lett., Vol. 45, pp. 604-609.

Györgyi P., T. Kis, 2014, �Approximation shemes for single mahine sheduling with non-

renewable resoure onstraints", J. Shed., Vol. 17, pp. 135-144.

Györgyi P., T. Kis, 2015a, �Redutions between sheduling problems with non-renewable resoures

and knapsak problems", Theoret. Comput. Si., Vol. 565, pp. 63-76.

Györgyi P., T. Kis, 2015b, �Approximability of sheduling problems with resoure onsuming

jobs", Ann. Oper. Res., Vol. 235, pp. 319-336.

Györgyi P., T. Kis, 2017, �Approximation shemes for parallel mahine sheduling with non-

renewable resoures", European J. Oper. Res., Vol. 258, pp. 113-123.

Kis T., 2015, �Approximability of total weighted ompletion time with resoure onsuming jobs",

Oper. Res. Lett., Vol. 43, pp. 595-598.

Slowinski R., 1984, �Preemptive sheduling of independent jobs on parallel mahines subjet to

�nanial onstraints", European J. Oper. Res., Vol. 15, pp. 366-373.

Toker A., S. Kondaki and N. Erkip, 1991, �Sheduling under a non-renewable resoure onstraint",

J. Oper. Res. So., Vol. 42, pp. 811-814.

Xie J., 1997, �Polynomial algorithms for single mahine sheduling problems with �nanial on-

straints", Oper. Res. Lett., Vol. 21, pp. 39-42.



The Cyclic Job Shop Problem with uncertain
processing times

Idir Hamaz1, Laurent Houssin1 and Sonia Cafieri2

1 LAAS-CNRS, Universite de Toulouse, CNRS, UPS, Toulouse, France
{ihamaz, lhoussin}@laas.fr

2 ENAC, Universite de Toulouse, F-31055 Toulouse, France
sonia.cafieri@enac.fr

Keywords: Cyclic scheduling, budgeted uncertainty set, robust optimization.

1 Introduction

Most models for scheduling problems assume deterministic parameters. In contrast, real
world scheduling problems are often subject to many sources of uncertainty, for example
activities duration can decrease or increase, machines can break down, new activities can be
incorporated, etc. In this paper, we focus on scheduling problems that are cyclic and where
activity durations are affected by uncertainty. Indeed, the best solution for a deterministic
problem can quickly become the worst one in the presence of uncertainties.

In this paper, we consider the Cyclic Job Shop Problem (CJSP) where processing times
are affected by uncertainty. Several studies were conducted on the deterministic CJSP.
The CJSP with identical parts is studied in (Roundy, R. 1992). The author shows that the
problem is NP-hard and designs a branch and bound algorithm to solve the problem. Hanen
(1994) investigates the general CJSP and presents a branch and bound procedure to tackle
the problem. A general framework for modeling and solving cyclic scheduling problems is
presented in (Brucker, P. and Kampmeyer, T. 2008). The authors present different models
for cyclic versions of the job shop problem. However, a few works consider cyclic scheduling
problems under uncertainty. Che, A. et. al. (2015) investigate the cyclic hoist scheduling
problem with processing time window constraints where the hoist transportation times
are uncertain. The authors define a robustness measure for cyclic hoist schedule and a
bi-objective mixed integer linear program to optimize the cycle time and the robustness.

In order to deal with uncertainty, we use a robust optimization approach. We model
the uncertain parameters by using the idea of uncertainty set proposed by Bertsimas and
Sim (2004). Each task duration belongs to an interval, and the number of parameters that
can deviate from their nominal values is bounded by a positive number called budget of
uncertainty. This parameter allows us to control the degree of conservatism of the resulting
schedule. Finally, we propose a branch and bound procedure that computes the minimum
cycle time for the robust CJSP such that, for each scenario in the uncertainty set, there
exists a feasible cyclic schedule.

2 Problems description

2.1 Basic Cyclic Scheduling Problem (BCSP)

We are given a set of n generic operations T = {1, ..., n}. Each operation i ∈ T is
characterized by a non-negative processing time pi and has to be performed infinitely often
without preemption. We denote < i, k > the kth occurrence of the generic operation i and
t(i, k) the starting time of kth occurrence of the operation i.



The operations are subjected to a set of precedence constraints (uniform constraints).
The constraints between the occurrences < i, k > and < j, k + Hij > are given by

t(i, k) + pi 6 t(j, k + Hij), ∀ i ∈ T , ∀ k ≥ 1 (1)

where Hij is an integer that represents the depth of the occurrence shift, usually referred
to as height. The Hij parameter is an occurrence shift between the operations i and j.
For instance, for each execution of the occurrence < i, k >, the next execution of j is the
occurrence < j, k + Hij >.

A schedule S is an assignment of starting time t(i, k) for each occurrence < i, k > of
task i ∈ T . Such schedule is called periodic with cycle time α if it satisfies

t(i, k) = t(i, 0) + αk, ∀ i ∈ T , ∀ k ≥ 1 (2)

where α is the cycle time and represents the difference between the stating times of two
successive occurrences of the same task.

Therefore, a schedule S can be entirely defined by the staring times ti = t(i, 0) of the
first occurrences and the cycle time.

In this study, the objective is to minimize the cycle time α while satisfying the prece-
dence constraints between operations. Notice that different objective functions exist for
cyclic scheduling problems, such as work in progress minimization or both cycle time and
work in progress minimization.

A bi-valued directed graph G = (T , U) can be associated with any instance of BCSP. In
this graph, a node (resp. an arc) of G corresponds to a generic operation (resp. constraints)
in the BCSP. Each arc (i, j) of G has two valuations, the length Lij = pi and the height Hij .
These arcs are called uniform arcs and are built by considering the precedence constraints.
For instance, a precedence constraint between task i and task j leads to an arc (i, j) of G
labeled with Lij = pi and Hij . We denote H(c) (resp. L(c)) the height (resp. length) of a
circuit c in graph G the sum of heights (resp. lengths) of the arcs composing the circuit c.

The minimum cycle time is given by the maximum circuit ratio of the graph which is
defined by

α = max
c∈C

∑
(i,j)∈c Lij∑
(i,j)∈c Hij

where C is the set of all circuits in G.
We call critical circuit the circuit c realizing the maximum circuit ratio. Several algo-

rithms have been proposed for the computation of critical circuits. An experimental study
about maximum circuit ratio algorithms was published in (Dasdan, A. 2004). The author
remarks that, among the several tested algorithms, the most efficient one is the Howard’s
algorithm. Although the algorithm has a pseudo-polynomial complexity, it shows notewor-
thy practical results.

Once the cycle time is determined, the starting times (ti)i∈T can be determined by
computing the longest path in the graph G where each arc (i, j) ∈ U is valued with
pi − αHij .

2.2 Cyclic Job Shop Problem (CJSP)

In the present work, we focus on the cyclic job shop problem (CJSP). The difference
with the problem defined above is that for CJSP the number of machines is lower than the
number of tasks to perform. As a result, the same resource must be shared between different
operations. A CJSP can be considered as a BCSP equipped with resource constraints.



Each occurrence of an operation i ∈ T has to be executed, without preemption, on the
machine M(i) ∈ M = {1, ..., m}. Operations are grouped on a set of jobs J , where a job j
represents a sequence of elementary operations that must be executed in order. To avoid
overlapping between the tasks executed on the same machine, for each pair of operations
i and j where M(i) = M(j), the following disjunctive constraint holds

∀ i, j s.t. M(i) = M(j), ∀k, l ∈ N : t(i, k) ≤ t(j, l) ⇒ t(i, k) + pi ≤ t(j, l) (3)
In summary, a cyclic job shop problem is defined by

• a set T of elementary tasks,
• a set M of machines,
• for each task i ∈ T , a processing time pi and a machine M(i) ∈ M on which the task

has to be performed,
• a set P of precedence constraints,
• a set D of disjunctive constraints that occur when two tasks are mapped on the same

machine,
• a set J of jobs corresponding to a production sequence of generic operations. More

precisely, a job J1 defines a sequence J1 = t1,1 . . . t1,k to be executed in that order.

The CJSP can be represented by directed graph G = (V, P ∪ D), called disjunctive
graph. The sequence of operations that belongs to the same job are linked by uniform arcs
in P where the heights are equal to 0. Additionally, for each pair of generic operations i and
j executed on the same machine, a disjunctive pair of arcs (i, j) and (j, i) occurs. These
arcs are labeled respectively with Lij = pi and Hij = Kij , and Lji = pj and Hji = Kji

where Kij is an occurrence shift variable that satisfies Kij + Kji = 1 (Hanen C 1994).
The following bounds on occurrence shift variables Kij have been proposed in (Hanen

C 1994):
K−

ij ≤ Kij ≤ 1 − K−
ij . (4)

with
K−

ij = 1 − min{H(µ) | µ from j to i in G}. (5)
A schedule is an assignment of all the occurrence shifts, i.e., determine precedence

relations on the operation occurrences mapped to the same machine. Note that once the
occurrence shifts are determined the problem is equivalent to the BCSP, therefore, the
minimum cycle time can be obtained by the cited algorithms.

Previous studies have shown that the problem is NP-Hard (Hanen C 1994) for cycle
time minimization.

2.3 Robust Cyclic Job Shop Problem (RCJSP)

In this paper, we investigate the robust version of the CJSP. More precisely, we are
interested in the CJSP where processing times are affected by uncertainty and belong
to a finite uncertainty set U . Based on the budget of uncertainty concept introduced in
(Bertsimas, D. and Sim, M. 2004), the processing time deviations can be modeled trough
the following uncertainty set:

UΓ =

{
(pi)i∈T ∈ Rn : pi = p̄i + p̂iξi, ∀ i ∈ T ; ξi ∈ {0, 1};

∑
i∈T

ξi ≤ Γ

}

where p̄i represents the nominal processing time of operation i and p̂i its deviation. The pa-
rameter Γ is a positive integer and represents an upper bound on the number of processing
times deviating from their nominal value.



The objective of the problem is to find, for a given budget of uncertainty Γ , the mini-
mum cycle time such that, for each p ∈ UΓ , there exists a vector (t(p)i)i∈T satisfying both
the precedence and disjunctive constraints.

3 Branch and bound procedure for the RCJSP

Recently, an Howard’s algorithm adaptation taking into account the uncertainty set
UΓ has been presented in (Hamaz, I. et. al. 2017). The computational experiments on the
algorithm show small execution times for robust BCSP instances.

To take into account the uncertainty on the processing times for the RCJSP, we develop
a branch and bound procedure that uses the robust version of the Howard’s algorithm. The
procedure starts by initializing the upper bound on the cycle time to

∑
i∈T pi + pf where

pf is the sum of the first Γ greatest deviations and the lower bound to the optimal cycle
time of G = (T , U) computed by the Howard’s algorithm adaptation.

We use the same branching scheme as in (Fink, M. et. al. 2012). The search tree is
initialized with a node (the root) where the graph G = (T , U) contains only the uniform
arcs U and no fixed disjunctions. Then, the branching is performed on unfixed disjunctions
Kij . For this purpose, a successor node is created for each value on the interval [K−

ij , 1−K−
ij ].

The value of the node is then computed by running the robust version of the Howard’s
algorithm with G = (T , U

′ ∪ {(i, j), (j, i)}), where U
′ contains the uniform arcs and a

precedent fixed disjunctive arcs. When all the occurrence shifts are fixed, a feasible schedule
is obtained, then the upper bound can be updated.

Preliminary numerical results show that the branch and bound procedure (implemented
in C++ and executed on an Intel Xeon E5-2695 processor running at 2.30GHz CPU)
delivers promising results. Besides, the algorithm is insensitive regarding the value of the
budget of uncertainty.

Once the optimal cycle time computed by the branch and bound procedure, a periodic
schedule SΓ = (α, ((t(p)i)i∈T ) can be determined for each p ∈ UΓ .

4 Conclusion

The RCJSP with budgeted uncertainty set is addressed in this paper. We present a
branch and bound procedure that uses a Howard’s algorithm adaptation. Further investi-
gation will address dominance rules to speed up the branch and bound procedure.
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1 Motivation

The scheduling of batch processes has been addressed with a variety of techniques
in the literature: Mixed-Integer Linear Programming models (Floudas and Lin, 2004), S-
graph Framework (Sanmartí et al., 2002), Linear-Priced Timed Automata (LPTA, Panek
et al., 2008), just to name the most frequent ones. Many of the approaches use an internal
representation of the scheduling problem, e.g. a State Task Network (STN, Kondili et al.,
1993), Resource Task Network (RTN, Pantelides, 1993), State Sequence Network (SSN,
Majozi and Zhu, 2001), that is used as a basis for formulating the mathematical model
for the optimization algorithms. An important advantage of the S-graph framework is that
the initial representation and the mathematical model for the algorithms are the same, the
so-called S-graph which is a directed acyclic graph. This transparency makes the approach
easier to understand, and modeling issues (Hegyháti et al., 2009) are easily avoided. This
simple model, however, carries limitations too. To apply it for industrial examples, minor
extensions or alterations are needed in some cases. The recently proposed eS-graph model
(Hegyháti, 2014) aims to extend its modeling power to avoid the need for further extensions,
while keeping the simplicity and transparency of the S-graph. In this work, the modeling
power of the eS-graph framework is presented through several industrial examples.

2 Short introduction of the S-graph framework

The S-graph framework was originally proposed for the short-term scheduling of chem-
ical batch processes. The framework is based on two major components:

• The mathematical model, the S-graph
• The branch-and-bound algorithm to find the optimal schedule

The S-graph model is a directed graph with weighted arcs. The nodes represent tasks
and products, which are illustrated by circles in the graphical representation. The circles
have labels attached that are the name of the product for the product nodes, and the
name of the task above the name of the suitable unit in case of task nodes. These nodes are
connected with weighted arcs, which express the production order of the tasks belonging to
the same product. Moreover, the weight of an arc is a lower bound on the necessary timing
difference between the two connected nodes. This graph, called recipe-graph, is extended
by the algorithm with arcs representing scheduling decisions. The algorithms report the
S-graph model of the optimal solution that can be easily and unambiguously converted to
a common graphical representation, such as a Gantt-chart. An example S-graph is shown
in Figure 1 with 9 tasks and 2 products. The scheduling decisions are expressed by the gray
arcs, e.g., the execution of t9 can not start earlier than the that of t4. The arcs representing
scheduling decisions are zero-weighted by default, which is often omitted in the graphical
representation as well.



Since its introduction, the S-graph framework has been applied to numerous case stud-
ies which often required small extensions, alterations of the model to fit and address the
problem-specific constraints. As an example, solving wet-etch scheduling problems required
an extension of the original S-graph model to implement zero-wait policy (Hegyháti et al.,
2014), or a new algorithm has been proposed to solve problems with the objective of
throughput maximization (Majozi and Friedler, 2006). While the individual difficulty of
these separate extensions vary, keeping them compatible is a challenging task on both theo-
retical and software implementation levels. To overcome this issue, the eS-graph framework
was proposed.
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Fig. 1. S-graph representing a schedule for two products.

3 The eS-graph model

The eS-graph model can be seen as a generalization of the S-graph model. In the S-
graph framework, there is a one-to-one relation between the nodes of the graph and the
tasks that have to be carried out using the available resources. The eS-graph model relaxes
this connection, and has the following basic building blocks:

• Events – are the atomic building blocks, that represent a single transition of the states
of the system. In the model, events are represented with nodes.

• Subprocesses – are the generalizations of tasks. Any activity that spans over some
events and requires the presence of some resources continuously can be considered as a
subprocess. Formally, any subset of the events can be a subprocess. Subprocesses may
also overlap each other.

Each subprocess may be carried out by a set of resources simultaneously, however,
several of such sets may exist, and it may influences the weights of the arcs within the
subprocess.

The original S-graph model can be seen as a special class of eS-graphs, where

1. The events considered are the starting of the tasks and removal of the products from
the last processing step.

2. Each subprocess spans over the event representing the start of a task, and its out-
neighbors in the recipe graph.

3. The resource sets of each subprocess are singletons.



The generalized definition, however, enables implementation of a wider set of practical
considerations without the need for further extensions to the model or the algorithms. The
eS-graph model can be solved to optimality by a slightly modified version of the original
S-graph algorithms, or with a precedence based MILP model.

4 An example eS-graph model

To illustrate the expressive power of the eS-graph framework, parts of the model for
scheduling job cells with automated guided vehicles is presented here. In this practical
study, there are several workstations where the jobs must be processed. The intermediates
between the stations are transported via automated guided vehicles (AGVs) (Zeng et al.,
2014).

The problem entails several specific constraints which cannot be modeled in a straight-
forward way in the S-graph framework, or the STN, RTN, or SSN representations. Two
such constraints are selected here, and used as an illustration for the simple modeling
techniques with the eS-graph model:

1. For each transportation, an arbitrary AGV is needed, which traverses through specific
line segments. While the AGV is transporting something, no other AGV can use the
same line segments. However, each station has its own loading area, thus, the path
segments become free when the AGV arrives to its destination.

2. Loading and unloading of intermediates takes a specific time, for which both the station
and the assigned AGV is required. It is not mandatory however, that the same AGV
is used for subsequent transportations of the same product.

Part of the proposed model is presented in Figure 2., where the events and subprocesses
are the following:

e1: job leaving machine m1.
e2: job arriving to machine m2.
e3: job starting to be processed on machine m2.
e4: job finishing to be processed on machine m2.
e5: job leaving machine m2.
e6: job arriving to machine m3.
sp1: transportation processes between machines m1 and m2.
sp2: transportation processes between machines m2 and m3.
sp3: traversing between machines m1 and m2.
sp4: traversing between machines m2 and m3.
sp5: manufacturing step of the job on machine m2.

As both events e2 and e3 are covered by both sp1 and sp5, both the AGV assigned to
the transportation and the machine m2 are needed for the unloading of the intermediate, as
required by the second statement above. sp2 however, is a completely different subprocess
from sp1, thus, a different AGV may be selected for it.

As for the first statement, the subprocess sp3 is a subset of sp1, and requires the
segments of one of the suitable paths between machines m1 and m2. While the AGV is
moving between the machines, the segments are unavailable for other AGVs, however, they
become free when it arrives to the loading area of m2. The same holds for sp4 and sp2,
however, there is only one possible path between m2 and m3.
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Fig. 2. Part of an eS-graph for the illustrative example.

5 Results

The modeling power of the eS-graph framework was examined on several industrial case
studies from the literature. The strong and weak points of this modeling technique were
identified, and the modified S-graph algorithms were compared with a proposed precedence
based MILP model on these examples.

6 Conclusions

The eS-graph model allows to model a much wider set of practical constraints arising
in industrial scheduling problems without the need for any extension on the model or the
applied algorithms. There are limitations to this model as well, however, it holds a great
potential. eS-graph can be seen as a middle ground between problem-specific scheduling
models, such as the S-graph, and the very general models like MILP and LPTA. While eS-
graphs are still scheduling specific, they are general enough so that the algorithms working
on them can be developed independently from the problems that are modeled with it. From
each acceleration, however, all of the modeled scheduling problem classes can benefit.
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1 Introduction

In Kellenbrink and Helber (2015), the resource-constrained project scheduling problem
with a flexible project structure (RCPSP-PS) is introduced. For such flexible projects, the
project structure is not known in advance. Instead, it depends on model-endogenous deci-
sions in which exactly one activity out of a decision set has to be selected. Those activities
can trigger further decisions or cause activities. Therefore, in addition to scheduling the
activities, the project structure has to be chosen.

The regeneration of complex capital goods, like aircraft engines, is an example for such
a flexible project due to different technical repair options. The regeneration is usually con-
ducted by an external service provider. These service providers mostly handle several dif-
ferent projects at the same time which results in a problem setting similar to the scheduling
of multiple projects, cf., e.g., Pritsker et al. (1969). Therefore, the RCPSP-PS is extended
to the resource-constrained multi-project scheduling problem with flexible project struc-
tures (RCMPSP-PS). Furthermore, different variants of genetic algorithms regarding the
representation are presented and evaluated.

2 Problem Setting

A flexible project l ∈ L comprises a set of different activities. These activities can be
divided into sets of mandatory activities j ∈ Vl and optional activities. In each decision
e ∈ El triggered by an activity a(l, e), exactly one of the optional activities j ∈ Wle has
to be chosen for implementation. A decision is triggered, if the triggering activity a(l, e) is
implemented. While a mandatory decision is assumed to be triggered by the start-dummy
job, a non-mandatory decision is triggered by an optional job. Additionally, the decision
for the implementation of an optional activity j ∈ Wle may cause the implementation of
further activities i ∈ Blj.

Due to the different possible project structures, not only renewable resources r ∈ R
but also nonrenewable resources n ∈ N have to be considered. This may lead to infeasible
combinations of project structures. Furthermore, we consider specific due date δl for all
projects. In case this due date is not met, specific delay costs cl for each delayed period
occur. Overall, the aim is to minimize the total delay cost.

Figure 1 shows an example for the given problem setting with two different flexible
projects I and II. These projects consist of eight non-dummy activities each. The project’s
decisions and caused activities, the resource consumption kljr and kljn, as well as the
duration dlj of the activities are given in the figure. While scheduling those two projects,
the capacities of one renewable and one nonrenewable resource are considered.

Project I contains two decisions. The first decision is mandatory and thus triggered by
the start-dummy activity I-1. Hence, the decision between the implementation of activity
I-4 and of activity I-5 has to be made. If activity I-4 is selected in the first decision, it



Project I
WI1

a(I,1)=I-1
WI2

a(I,2)=I-4

BI-5

I-1

0

0,0

I-2

3

2,1

I-3

1

2,2

I-4

4

1,2

I-5

2

3,1

I-6

3

2,1

I-7

3

1,3

I-8

4

1,2

I-9

2

2,1

I-10

0

0,0

Project II

WII1

a(II,1)=II-1

BII-5

II-1

0

0,0

II-2

2

1,3

II-3

1

2,2

II-4

2

3,1

II-5

1

1,2

II-6

5

2,2

II-7

4

3,1

II-8

1

2,1

II-9

2

2,2

II-10

0

0,0

Legend

l-i

dli

klir, klin

l-j

dlj

kljr, kljn

decision set caused activities

Fig. 1. Example of multiple flexible projects

triggers the second decision on activities I-7 and I-8. In case activity I-5 is selected in the
first decision, activity I-6 is caused. For scheduling project I, the capacity of the renewable
resource is KIr = 2 and the capacity of the nonrenewable resource is KIn = 9. With
the given capacity of the nonrenewable resource, all three possible project structures are
feasible. The due date for project I is at the end of period seven. The delay costs for each
period equal seven units.

Project II has only one mandatory decision on the three activities II-5, II-6 and II-7.
While activity II-6 and II-7 neither trigger a decision nor cause an activity, activity II-5
causes activity II-9. The resource capacities are KIIr = 3 and KIIn = 10. The capacity of
the nonrenewable resource leads to an infeasible solution in case activity II-5, which causes
activity II-9, is chosen. The due date of project II is at the end of period eight with delay
costs of three units per period.

When scheduling both projects separately, in project I the optional activities I-4 and I-7
are implemented and we get a six period delay resulting in total delay cost of 6·7 = 42 units.
The optimal schedule of project II shows no delay. In this project the optional activity II-7
is selected and scheduled.

For scheduling both projects simultaneously, we assume capacities of Kr = 2 + 3 = 5
and Kn = 9 + 10 = 19. In the optimal schedule, project I is finished without a delay
but project II gets a one period delay. This leads to total delay cost of three units, which
is lower than the result of 42 units for considering separate schedules. Furthermore, the
selected project structures of both projects have changed. In project I activities I-5 and
I-6 are implemented. In project II activities II-5 and II-6 are scheduled. This shows that
for multiple flexible projects not only the scheduling but also the chosen project structures
influence each other.

3 Genetic Algorithms

Many approaches for scheduling multiple projects make use of priority rules, cf. Brown-
ing and Yassine (2010) for an overview. Therefore, in Hoffmann et al. (2017) different
priority rules to solve the RCMPSP-PS were evaluated. However, the numerical results
have not been overly satisfying. Presumably, the interaction of the differently prioritized



projects, the project structures and the scheduling is too complex to be represented by a
priority rule. Therefore, the use of a genetic algorithm seems to be more promising. In the
following, we sketch different options to represent an individual and a solution, respectively.

To evaluate the different approaches, we present first numerical results. The test set
of our numerical study contains 1728 PSPLIB-based two-project instances with 15 non-
dummy activities each. However, we excluded 112 instances that could not been solved to
proven optimality by a standard solver as well as 15 infeasible instances and one instance
with total delay cost of zero.

3.1 Selection of the project structure

In addition to the scheduling of activities, for flexible projects the solution representa-
tion has to include the decision on the project structure. Therefore, Kellenbrink and Helber
(2015) use a choice list to indicate the selected activities. Due to the effectiveness of the
random-key representation for scheduling projects, cf., e.g., Gonçalves et al. (2008), we
additionally developed a random-key based representation for the decision on the project
structure. According to our numerical study, both approaches obtain comparable results.

3.2 Scheduling the activities

There are different variants of genetic algorithms known in the literature to schedule
single projects with a fixed project structure. Two important aspects of a genetic algorithm
are the representation of a schedule and its decoding, including the schedule generation
scheme (SGS) applied.

Hartmann (1998) introduces a genetic algorithm to solve the resource-constrained project
scheduling problem using an activity list. Gonçalves et al. (2008) achieve good results by
using a random-key representation to schedule the activities of multiple projects with a
fixed project structure. Our numerical results show that the random-key representation
leads to better results for our problem setting.

For each representation, the fitness can be determined by applying the serial SGS. Hart-
mann (2002) introduces a self-adapting genetic algorithm where the solution representation
includes the decision on using the parallel or the serial SGS. We have refined this approach
by giving information on the SGS used in each scheduling step. In Figure 2, the relative

Fig. 2. Consideration of different SGS Fig. 3. Consideration of project preferences



deviations from the total delay cost of the considered instances are given. After only eight
generations, the stepwise changing SGS outperforms the other approaches.

When computing the numerical results in Figure 2, we did not take the different impor-
tance of the projects into account. However, Hoffmann et al. (2017) show that the inclusion
of project preferences is important for scheduling multiple projects with flexible project
structures.

Thus, we define representations where project priorities are added. The project prior-
ities are represented as random-keys which are then multiplied by the specific delay costs
to itensify the effect. Those project preferences determine for each scheduling step which
project is prioritized. As another option, we use a project list which directly gives the infor-
mation, which project is scheduled next. Figure 3 shows our results for the representation
of project preferences. The usage of project priorities enhances the solutions found. After
30 generations, the mean deviation from the optimum amounts to 1.39%.

4 Outlook

As described above, there are many different possibilities to define the representation
for the different aspects of the given problem setting. Our numerical results show efficient
combinations of representations working together best regarding performance and com-
putational time. We will focus on applying our approach to larger instances containing
more than two projects in future research. Moreover, we will determine the potential of
using forward-backward-improvement while scheduling the activities. In addition, we will
alternate the evolutionary process and evaluate resulting effects.
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1 Introduction

The job-shop scheduling problem is one of the well-studied issues in scheduling research.
The integration of blocking constraints is motivated by real-world applications like the
scheduling of trains in a network and the production of huge items. It refers to the absence
of bu�ers in the planning system, so that a job blocks a machine until its subsequent
machine is idle. As a customer-oriented optimization criterion, the minimization of the
total tardiness of all jobs with regard to given due dates is considered.

Di�erent mathematical programming formulations of the blocking job-shop problem
(BJSP) with total tardiness minimization are tested and discussed in Lange and Werner
(2017). The results provide an indication to the necessity of heuristic methods for the
BJSP. In line with this idea, several authors present heuristic approaches to tackle related
types of job-shop scheduling problems. Minimizing the makespan, the BJSP is solved by a
genetic algorithm in Brizuela et. al. (2001) and by a tabu search heuristic in Grö�in and
Klinkert (2009). Di�erent neighborhoods adapted to a total weighted tardiness objective
are presented by Kuhpfahl and Bierwirth (2016) for the job-shop problem without blocking
constraints. Furthermore, Bürgy (2017) applies a graph-based tabu search approach to the
BJSP considering di�erent regular optimization criteria. Based on a generalized graph for-
mulation for the BJSP, a hybrid branch-and-bound-method is applied to a train scheduling
problem with a tardiness-based objective in D'Ariano et. al. (2007).

In contrast to the techniques given in the literature, two permutation-based heuristic
approaches are presented and compared in this paper. Since total tardiness minimization
corresponds to a regular optimization criterion, a solution to the problem is a schedule
de�ned by the operation sequences on the machines. Here, these sequences are given by a
list or permutation of all operations. Two well-known strategies are implemented to set up
a neighborhood. First, a neighbor is determined by an adjacent pairwise interchange (API)
of two operations on a machine. Second, a neighbor is de�ned by a random leftward shift
of all operations of a job in the permutation.

While these neighborhoods are successfully applied to job-shop problems without ad-
ditional constraints and characteristics like connectedness can be shown easily, there are
signi�cant feasibility issues occurring in the BJSP. Since a given permutation does not
necessarily correspond to a feasible schedule, complex construction and repair procedures
have to be used to de�ne feasible neighbors. Therefore, performance and characteristics of
these neighborhood structures need in-depth investigation for the BJSP .

In this paper, special emphasis is given to the adjustment of the neighborhood to the
optimization criterion. In line with the idea of observing a critical path for a makespan ob-
jective, neighbors are de�ned based on choices of interchanges and shifts made from the set
of tardy jobs. General and tardiness-based neighborhoods are described and implemented in
a simulated annealing (SA) metaheuristic. Computational experiments are done on train
scheduling-inspired instances as well as on benchmark instances from Lawrence (1984).



Conclusions are drawn regarding the solution quality of the heuristic methods compared
to the results obtained by solving the corresponding MIP formulations.

2 Problem description

A set of jobs J = {Ji | i = 1, ..., n} is given, where each job consists of a set of
operations and Oi,j denotes the j-th operation of job Ji. The technological route of a job
Ji is de�ned by the requirement of a certain machine Mk ∈ M by each operation, where
M describes the set of machines. Additionally, release dates ri and due dates di are given
for Ji ∈ J and recirculation is allowed. Among all schedules, which are feasible with regard
to technological route and blocking constraints, a schedule with minimal total tardiness is
to be found. The considered BJSP is characterized by J | ri, di, block, recr |

∑
Ti.

A schedule can be expressed by an operation-based representation sop corresponding to
the permutation of operations and by a machine-based representation sma corresponding
to the operation sequences on the machines. Thus, every operation Oi,j is assigned to a
list index lidx(Oi,j) ∈ {1, 2, . . . , nop} in sop, where nop denotes the number of operations,
and to a machine index midx(Oi,j) ∈ {1, 2, . . . , Rk} in sma, where Rk denotes the number
of operations on machine Mk. These indexes can also be referred to as positions in the
permutation and on the machine, respectively.

3 Permutation-based neighborhoods for the blocking job-shop problem with

total tardiness minimization

De�ning neighbors by APIs is a well-known strategy in job-shop scheduling. W.l.o.g.,
a pair of operations will only be interchanged, if there is no idle time on the machine
between these operations. In this paper, a general API neighborhood is set up by choosing
the neighbor-de�ning API from the set of all possible pairs of operations. Furthermore,
the TAPI neighborhood is described by choosing the neighbor-de�ning API from the set of
possible pairs of operations for which the second (leftward shifted) operation belongs to a
tardy job. Both neighborhoods are set up using the machine-based representation of the
solution.

In order to involve some randomness in the optimization process, the TJ neighborhood

is de�ned and operated on the operation-based representation. Here, a job is randomly
chosen from the set of tardy jobs and all its operations are shifted to arbitrary positions
with lower list indexes in the permutation.

All three neighborhoods are exemplary illustrated for an instance with 3 machines and
4 jobs in Figure 3. A feasible schedule is given, where job J4 is tardy and job J2 is �nished
on time. A neighbor in the TJ neighborhood is generated by shifting all operation of the
tardy job J4 to positions with lower list indexes. As an example of a TAPI neighbor, the
pair O3,1 and O4,2 on machine M1 is chosen, since operation O4,2 belongs to the tardy job
J4. In the more general API neighborhood, one possible neighbor-de�ning API reverses the
order of the operations O3,2 and O2,2 on machine M2.

In operating these three neighborhoods, the resulting operations-based representations
are infeasible with regard to blocking constraints for most of the neighbors. A complex re-
pair procedure is applied to construct feasible neighbors while taking the neighbor-de�ning
API as given. By doing so, necessary changes in the schedule are made to regain feasibil-
ity. Grö�in and Klinkert (2009) present a connected neighborhood for the BJSP based on
a job-insertion technique with an underlying disjunctive graph. The neighborhoods con-
sidered in this paper are more general and operate on a simple list structure. Since the
connectivity is not yet shown, computational experiments are a good index of performance



Fig. 1. Illustration of three di�erent neighbors of a schedule

and potential. Furthermore, it is not clear whether a restriction of the API neighborhood
based on the optimization criterion is reasonable for the minimization of total tardiness.

4 Computational Results

The computational experiments are done on randomly generated train scheduling-
inspired instances (TS) as well as on Lawrence instances (LA) adapted for the BJSP.
The release dates ri of the jobs are generated so that jobs are forced to overlap in time and
the due dates are determined by di = δ ·

∑
pi,j with a tight due date factor of δ = 1.2. The

size of the instances is denoted by (m,n), where m corresponds to the number of machines
and n indicates the number of jobs. There are �ve di�erent instances for each instance size.

A simulated annealing (SA) is used to solve the given problems, where the TJ neigh-
borhood is applied with a probability of 0.1 and the API and TAPI neighborhoods are
complementary applied with a probability of 0.9, respectively. A geometric cooling scheme
ti+1 = k · ti is used with k ∈ {0.99, 0.995, 0.999}. The initial and terminal temperature,
t0 and T , are chosen in accordance to the range of the objective function values with
(t0, T ) ∈ {(20, 10), (200, 50), (1000, 100)}. The total number of iterations done by the SA
ranges dependent on the instance size between 11000 and 64000.

The best out of the �ve runs for each instance (w.r.t. the objective function value) is
compared to the results obtained by solving a MIP formulation for the BJSP with IBM
ILOG CPLEX 12.6.1. as given in Lange andWerner (2017). The computational experiments
involving the MIP solver, the SA with tardiness-based neighborhoods (TJ, TAPI) and the
SA mainly relying on the general neighborhood (TJ, API) are summarized in Table 1. For
each instance size, the number of instances solved to optimality (opt) by the MIP solver
and the number of instances, for which a feasible solution is found, are given. Below, the
number of instances for which the variants of the SA obtained the optimal solution or
improved the best known feasible solution (opt/im) is stated. Additionally, the number of
instances for which the SA approaches reached a solution within a 10% gap compared to
the best known solution found by the MIP solver is given.

The comparison of the performance of the neighborhoods is done �rstly based on the
total number of instances solved with (near-)optimal solutions and secondly regarding
the number of instances solved to optimality or improvement for each instance size. The
superior setting is emphasized in bold face. It can be observed that the SA with the API
neighborhood obtains better or equivalent solutions for eight of the ten given instance sizes.
This indicates that due to the tardiness-based optimization criterion and a high number of
interdependencies caused by blocking constraints the idea of an adaption to the objective



Table 1. Computational results of applying an SA to the BJSP

TS inst. Lawrence instances

(m,n) (11, 10) (11, 15) (5, 10) (5, 15) (5, 20) (10, 10) (10, 15) (10, 20) (10, 30) (15, 15)

total 5 5 5 5 5 5 5 5 5 5

MIP

opt 5 3 5 1 - 5 1 - - 2
feasible - 2 - 4 5 - 4 5 1 3

SA - (TJ, TAPI)

opt/im 4 1 3 2 2 3 1 2 5 -
< 10% 1 3 2 1 3 1 1 1 - -

SA - (TJ, API)

opt/im 5 - 4 1 3 3 2 1 5 -
< 10% - 2 1 4 2 1 - 2 - -

function does not improve the API neighborhood for the BJSP. Statistical issues, which
are not presented in detail here, show that the larger number of possible neighbors causes
a higher deviation in the objective function values of the best solutions found but leads to
better results on average.

5 Conclusion

In this paper, general and tardiness-based neighborhood structures for the BJSP are
embedded in a SA and tested with regard to their performance compared to MIP solving
techniques. Computational experiments are done on train-scheduling inspired and bench-
mark instances. The results give evidence to the fact that an adaption of the API neigh-
borhood to the objective by exclusively choosing leftward interchanged operations of tardy
jobs does not improve the solution quality. Signi�cant feasibility issues involved by the
blocking constraints seem to necessitate a larger number of possible neighbors to obtain
(near-)optimal solutions with higher frequency.
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1 Introduction

We consider a problem of scheduling n jobs on m identical parallel machines to minimize
the total completion time. Let J = {1, . . . , n} be the set of jobs and M = {1, . . . , m} be the
set of machines. Job j has a given release date rj and a set of machines that can process
job j, which is called the eligible set of job j and denoted by Mj for j ∈ J . All jobs have an
equal processing time, denoted by p. This problem is denoted by P |rj , Mj , pj = p|

∑
Cj .

When the number of machines is considered a fixed constant, the problem is denoted by
Pm|rj , Mj , pj = p|

∑
Cj .

There are a lot of papers on the parallel machine scheduling to minimize the total
completion time. It is known that R||

∑
Cj can be solved in O(n3) time by assignment

formulation (Bruno et al. 1974, Horn 1973). Note that P |Mj |
∑

Cj is a special case of
R||

∑
Cj because we can consider that pij = pj for i ∈ Mj and pij = ∞ for i ̸∈ Mj . Thus,

P |Mj |
∑

Cj can be solved in O(n3) time as well.
If release dates are involved, the complexity of the problem changes. While Lenstra

et al. (1977) showed that 1|rj |
∑

Cj is strongly NP-hard, 1|rj , prmt|
∑

Cj can be solved
by Shortest Remaining Processing Time (SRPT) rule optimally. Brucker and Kravchenko
(2004) proved that P |rj , prmt|

∑
Cj is strongly NP-hard.

As for equal processing time jobs cases, the problem P |rj , pj = p, Dj |
∑

Cj where
job j has a deadline Dj can be solved in O(mn2) time (Simons and Warmuth 1989).
Qm|rj , pj = p|

∑
Cj is solvable in O(mn2m+1) time (Dessouky et al. 1990). However, the

complexity for Q|rj , pj = p|
∑

Cj with an arbitrary number of machines is still open. For
preemptive case, Brucker and Kravchenko (2005) showed that P |rj , pj = p, prmt|

∑
Cj can

be solved in polynomial time by providing a linear programming formulation. Kravchenko
and Werner (2009) generalized the previous result for the problem Q|rj , pj = p, prmt|

∑
Cj

and provided a more complicated linear programming formulation with O(mn3) variables
and constraints to solve the problem in polynomial time.

In Section 2, we show that the problem with a fixed m, Pm|rj , Mj , pj = p|
∑

Cj , can
be solved in polynomial time. For an arbitrary m, it is unknown whether the problem is
polynomial solvable or not. Thus, we present an approximation algorithm for the problem
with an arbitrary m along with worst case analysis in Section 3. Section 4 shows the
experimental results with a modified algorithm and Section 5 concludes the paper.



2 Dynamic programming algorithm with fixed m

2.1 Preliminary

Let M = {Mj |j ∈ J}, which is the set of all distinct eligible sets of all jobs. Then,
M ⊂ 2M \∅. Let k = |M| and, without loss of generality, M = {M1, . . . Mk}. Note that
k < 2m.

Proposition 1. There exists an optimal schedule in which jobs having Me ∈ M as the
eligible set scheduled at each machine are scheduled in Earliest Release Date first (ERD)
order.

From Proposition 1, we define the partition of the set of jobs as Je = {j|Mj = Me} for
e = 1, . . . , k. Let ne = |Je|. We assume that jobs in Je are sorted in ERD order. Let re(j)
denote the release date of j-th job in Je for j = 1, . . . , ne.

Proposition 2. There exists an optimal schedule in which the completion time of job j
scheduled at a machine has a form of rj + ap for some j ∈ J and a ∈ ¸{1, . . . , n}.

From Proposition 2, we define the set of candidates for completion times of jobs as
Λ = {t|t = rj + ap, j ∈ J, a ∈ {1, . . . , n}}. Thus, |Λ| = n2.

2.2 Dynamic programming algorithm

We consider a partial schedule with first be jobs from Je for e = 1, . . . , k in which the
latest completion time of machine i is ti for i ∈ Λ. Let α = (ti : b1

i , b2
i , . . . , be

i , . . . , bk
i ) be

the state of machine i where be
i set of jobs among first be jobs from Je are scheduled at

machine i for e = 1, . . . , k, where
∑m

i=1 be
i = be. Note that if i ̸∈ Me, then be

i = 0.
The state of a partial schedule is a collection of states of all machines and is denoted

by α = (α1, α2, . . . , αm) where αi denotes the state of machine i and αi has the latest
completion time ti and the collection of be

i ’s, the numbers of scheduled jobs from Me for
e = 1, . . . , k, i.e., αi = (ti : b1

i , . . . , bk
i ), for i ∈ M .

Let V (α) be the total completion time of the current partial schedule.

Restriction

• ti ∈ Λ for i ∈ M and be
i ∈ {0, 1, . . . , ne} for e ∈ {1, . . . , k}

Boundary conditions

• V (α0) = 0 where α0 = (α0
1, α0

2, . . . , α0
m) and α0

i = (0 : 0, . . . , 0) for i ∈ {1, . . . , m}
• V (α) = ∞ if there exists i such that ti < 0 or there exist e and i such that be

i < 0

Recursive relationship

• V (α) = min{V (α̂(h, f)) + th|h ∈ {1, . . . , m}, f ∈ {1, . . . , k}, rf (bf ) ≤ th − p, th ∈ Λ}
where

◦ α̂(h, f) = (α̂1, α̂2, . . . , α̂m)
where α̂i = αi for i ̸= h and α̂h = (t̂h : b̂1

h, . . . , b̂k
h)

◦ bf =
∑m

i=1 bf
i

where b̂e
h = be

h for e ̸= f and b̂f
h = bf

h − 1
◦ t̂h = th − p and t̂h ∈ Λ

• If there does not exist a pair of (h, f), then V (α) = ∞.

Optimal condition



• min{V (α)|be = ne for e ∈ {1, . . . , k}}

The time complexity for an arbitrary eligibility case is O(m2m−1n2+(1+2m)m), so the
proposed Dynamic Programming (DP) algorithm is polynomial for a fixed m. However,
for an arbitrary m, the complexity of the problem is still unknown. Thus, we propose an
approximation algorithm for it in the next section.

3 Approximation algorithm

Let I be an instance of the problem, P |rj , Mj , pj = p|
∑

Cj , and z(I) be the optimal
objective function value of I. Then, we consider two problem instances that can be defined
from I:

• IL: rj is redefined ad ⌊ rj

p ⌋ × p

• IU : rj is redefined ad ⌈ rj

p ⌉ × p

Since the release dates of IL and IU are integer multiples of p, by scaling, these can be
regarded as problem instances of P |rj , Mj , pj = 1|

∑
Cj where rj is a non-negative integer.

P |rj , Mj , pj = 1|
∑

Cj can be solved by assignment formulation in polynomial time.
The optimal solution of IU is feasible to I, and is a 2-approximation solution of I

because z(IL) ≤ z(I) ≤ z(IU ) and z(IU ) − z(IL) ≤ np. This approximation ratio is tight
from the following example. Consider a problem instance with one job with processing time
p and infinitesimal release date ∆. Since ∆ > 0, release date of the job in IU is p. The
optimal objective value of IU is 2p, while optimal objective value of I is p + ∆. As ∆ → 0,
the ratio between optimal objective values of IU and I approaches 2.

4 Experiments and Result

For the practical purpose, we can elaborate the algorithm. After solving with IU , we
can keep machine assignment and the job sequence at each machine while we schedule
jobs as early as possible. From this procedure, we can reduce the objective function value
from z(IU ). For more effect, jobs assigned to the same machine m should be ERD-ordered
according to the original release date rj ∈ I. For this to happen, we propose the following
time-indexed MIP formulation.

Parameters

• m: number of machines
• n: number of jobs
• p: processing time of all jobs
• r′

j : modified release date of job j, (r′
j = ⌊ rj

p ⌋p for IL, r′
j = ⌈ rj

p ⌉p for IU )
• δj = r′

j − rj

• T : the set of possible starting times, T = {0, p, 2p, . . . , max{r′
j} + np}

• Pijt: big number P if i ̸∈ Mj or t < r′
j for i ∈ M , j ∈ J , t ∈ T , and 0 otherwise

Variables

• xijt: 1 if job j starts at time t by machine i, 0 otherwise

Minimize
m∑

i=1

n∑
j=1

∑
t∈T

txijt(1 + ϵδi) + np + Pijtxijt



Subject to
m∑

i=1

∑
t∈T

xijt = 1, for j ∈ J

n∑
j=1

xijt ≤ 1, for i ∈ M , t ∈ T

xijt ∈ {0, 1}, for i ∈ M , j ∈ J , t ∈ T .

The term δj in objective function enables jobs with earliest original release dates rj to
be processed earlier than those who have the same r′

j but greater rj . The term Pijtxijt

in objective function eliminates the schedules in which any job violates machine eligibility
and release date constraints.

We can apply this idea to IL as well by keeping machine assignment and the job
sequence at each machine while scheduling jobs as early as possible. The total completion
times from the solutions IL and IU obtained this way will be denoted as z′(IL) and z′(IU ),
respectively.

We also consider a simple priority-rule based algorithm, denoted as Greedy, as follows:

• First, choose the job with earliest release date(ERD) rule. If more than one job have
the same ERD, choose the one with smallest eligibility |Mj |.

• Second, choose the machine i ∈ Mj with earliest available time. If a tie happens, choose
the one with smallest job eligibility among remaining jobs.

• Assign chosen job to chosen machine’s job queue, iterate until all jobs are assigned.

The total completion time obtained by Greedy algorithm will be denoted as grd(I).
So far we propose three simple algorithms to obtain a feasible schedule. For given

problem instance, the algorithm’s objective value (ALG) is defined as a minimum of z′(IL),
z′(IU ), and grd(I). Optimal objective value (OPT ) can be calculated by an exact MIP
formulation or dynamic programming algorithm. In order to evaluate the performance of
the proposed algorithm, we conduct an experiment with randomly generated test instances.
Total 30,000 instances are created with following parameters.

• m ∈ {2, 3, 4, 8, 16}
• n ∈ {2m, 3m, 4m, 5m, 6m}
• p ∈ {2, 3, 4, 8, 16}
• rj ∼ U

(
0, np

m · dr
)
, dr ∈ {0.5, 1, 1.5, 2}

• E(|Mj |) = m · dM , dM ∈ {0.4, 0.6, 0.8} subject to |Mj | ≥ 1 ∀j ∈ J
• Replication per each setting: 20

The longest computation time among 30,000 instances is less than 10 seconds. The
result says 28,604 instances (95.3% of all instances) show ALG = OPT and in only 1,396
instances (4.7% of all), ALG was strictly greater than OPT . The worst case ratio of the
ALG/OPT was 19/18 (≈ 1.056). It shows that the proposed algorithm effectively works
in the worst perspective.

The average ALG/OPT trend according to each parameter is shown in graphs below.
The mean of ALG/OPT increased as number of machines m increases until m = 8,

and decreased when m = 16. The algorithm is expected to perform well when number
of machines is large, and the result is as expected. The ratio between number of jobs n
and m seems to have no effect on ALG/OPT because it neither makes the problem easier
nor harder. The algorithm performs better as processing time p increases. It is considered
reasonable because using the sequence of IL(IU ) on original instance I have the same effect
as pushing jobs backward(forward) in the range of p. The algorithm performs better when



 

Fig. 1. Trend graphs of ALG/OP T .

the mean of release dates is smaller, which is similar to problem with no release dates. The
algorithm performs better when the mean of |Mj |/|M | is larger, which is closer to problem
with no eligibility constraints.

5 Conclusions

We propose a polynomial time DP algorithm for Pm|rj , Mj , pj = p|
∑

Cj with fixed
m. With a slight modification, this result can be extended to Qm|rj , Mj , pj = p|

∑
Cj

without increasing the time complexity by defining Λi = {t|t = rj + ap/vi, j ∈ J, a ∈
{1, . . . , n}} with vi being a speed of machine i as a set of candidate completion times
at machine i for i ∈ M . The proposed approximation algorithm is a 2-approximation
algorithm and its practical modification works very well experimentally in both worst and
average perspectives.
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1 Introduction and motivations

Nowadays, a key success factor for many large enterprises is the ability of properly man-
aging labor cost and timetables. This is the reason why workforce planning and scheduling
tools are now getting more and more developed.

Two are the typical issues arising in such applications: the �rst is related to the medium
and long-term goal of estimating the amount of workers that the company will require in
future periods. The second, mostly linked to short-term operations, involves the assignment
of human resources to activities in order to meet deadlines and industrial plans.

In practice, to conduct a complete analysis and evaluate the e�ectiveness of a solution
it is important to take into account both time and �nancial objectives, considering not only
the need of reducing durations and delays but also the ability to do so within reasonable
budgets. The result is a trade-o� problem looking at the same time at avoiding resource
underutilization and incapacity to comply with due dates.

In the following, we present a new approach to solve the workforce scheduling problem
in complex applicative contexts such as manufacturing and logistics, characterized by the
simultaneous processing of several activities, the occupation of wide areas, the coexistence
of independent workloads, the use of advanced machineries and, above all, the employment
of di�erent types of operators, having various abilities and experience levels.

Standard approaches usually address this issue by de�ning distinct planning, scheduling
and allocation problems. However, within the considered context, the problem of providing
the right number of workers with the right skills at the right time is inherently linked to the
schedule of the activities. For this reason, we rather propose a strategy to tackle all these
aspects at the same time, taking into account a reasonable time horizon. As a result we
obtain a large problem requiring not only a proper representation of processes complexity,
but also a feasible assignment of operators to tasks and an optimized activities scheduling.

In what follows, the structure of the problem is formalized and a specialized simulation-
based decomposition framework is proposed.

2 Problem description

Hereinafter, we will consider systems where one or more processes are executed. Rough-
ly, a process can be described in terms of two basic de�nitions: the skills employed and
the component activities. A skill represents the ability of an operator to perform certain
tasks, thus identifying a worker type. An activity can be any non-interruptible elementary
time-consuming operation requiring skilled operators to be completed.



Activities may be linked by some precedence constraints, but have variable starting
times that can be modi�ed in order to create optimal schedules satisfying logical and s-
trategical restrictions. Indeed, activities may be subject to release and deadline constraints,
and are a�ected by workforce availability limitations.

A basic assumption of our approach is that the number of skills required by each activity
is not �xed and therefore there exist many feasible combinations of operators guaranteeing
tasks completion. In particular, allowing to vary the workforce assignments between a lower
and an upper limit, we evidently admit variability to operations processing times. Such
aspect heavily characterizes our procedure. Assuming it is not possible to derive analytic
functions expressing the link between allocated skills and time to complete the activities,
we have based our solution method on the use of a set of ad hoc simulators, having as
input a vector of worker availabilities and as output a duration estimate.

The result is a simulation-optimization problem facing a typical trade-o� between dif-
ferent objectives. On the one hand it aims at reducing the employment cost, minimizing
the number of necessary skilled operators, on the other, it encourages an optimal activities
scheduling, trying to parallelize the tasks and decrease the overall completion time.

2.1 Mathematical formulation

In order to introduce the general mathematical formulation we have developed for this
problem, we �rst need to list some basic de�nitions. We will consider m activities and n
di�erent skills. Let A = {1, ...,m} be the set of indexes for activities, and S = {1, ..., n}
be the set of indexes for skills. Each activity is non-preemptable and is characterized by
a variable processing time, a release date rj and a due date dj . Both rj and dj are real
parameters and can be set to zero and in�nity to nullify the associated constraints.

Precedence relations are given by the set Q of ordered index pairs, such that (j1, j2) ∈ Q
means that the execution of activity j2 must start after the end of activity j1. The same
concept can be expressed by an activity-on-node graph whose nodes correspond to activi-
ties, and arcs represent sequence constraints. From this perspective, a necessary condition
to guarantee consistent precedence relations is that the graph contains no cycles.

Our problem formulation involves three main types of decision variables. First, the total
number of operators made available for each skill is represented by a vector y ∈ Nn, such
that yi denotes the availability of resource i. Second, integer variables xij are required to
indicate the number of workers with skill i assigned to activity j. Finally, the starting-
time continuous variables tj are introduced for each activity j, thus making possible the
scheduling.

Alongside these de�nitions, two auxiliary variables γjc and θjc are used in our mathe-
matical model, where j and c both belong to A; their meaning will be soon clear.

Ultimately, minding our assumption on the dependence among operators assignments
and time to complete the activities, we can identify the output of the j-th simulator with
the symbol τj = ϕj(x1j , . . . , xij , . . . , xnj), so expressing the processing time of activity j
as an unknown function of the variable skill allocations.

We can therefore formalize the problem in a bilevel programming formulation having
as upper-level and lower-level objectives two generic functions. Their global e�ect can be
thought of as the combination of two con�icting components: the �rst accounting for the
workforce cost, the second expressing a time objective. As an example of this trade-o�, we
can consider a situation where variables yi are, at the same time, pushed down to lower
salaries expenses, and pushed up to relax resource constraints and obtain better results
in activities scheduling, improving, for example, the overall makespan, the sum of projects
completion times or the average �nish time of activities.

We propose the following formulation:



min
x,y,τ,t,γ,θ

f1(x, y, τ, t, γ, θ) (1)

s.t. lij ≤ xij ≤ uij i ∈ S, j ∈ A (2)

xij ≤ yi i ∈ S, j ∈ A (3)

yi ≤
∑
j∈A

xij i ∈ S (4)

τj = ϕj(x1j , .., xnj) j ∈ A (5)

yi ∈ N i ∈ S (6)

xij ∈ N i ∈ S, j ∈ A (7)

τj ∈ R+ j ∈ A (8)

(t, γ, θ) ∈ arg min
t,γ,θ

f2(t, γ, θ) (9)

s.t. tj ≥ rj j ∈ A (10)

tj ≤ dj − τj j ∈ A (11)

tȷ̃ ≥ tȷ̂ + τȷ̂ (ȷ̂, ȷ̃) ∈ Q (12)∑
j∈A

xijγjc ≤ yi i ∈ S, c ∈ A (13)

tc − tj ≥ M(γjc − 1) j ∈ A, c ∈ A (14)

tc − tj ≤ τj + M(1 − γjc) − ε j ∈ A, c ∈ A (15)

tc − tj ≥ −Mθjc + τj −
τj
2
γjc j ∈ A, c ∈ A (16)

tc − tj ≤ M(1 − θjc) +
τj
2
γjc − ε j ∈ A, c ∈ A (17)

tj ∈ R+ j ∈ A (18)

γjc ∈ {0, 1} j ∈ A, c ∈ A (19)

θjc ∈ {0, 1} j ∈ A, c ∈ A (20)

The upper and lower level objective functions are respectively contained in (1) and (9).
In (2) are the bounds for variables xij . Constraints (3) and (4) express two concepts: the
availability of operators with skill i must be (i) enough to guarantee that each activity
can be independently executed (e.g. if scheduled in sequence with the others), and (ii) not
more than the total amount of resources that would be needed if all the activities were
parallelized. Relation (5) brings processing time simulations into the problem. Constraints
(10) and (11) give release date and deadline limits, while inequalities (12) describe the
precedence relations between activities.

In order to understand the meaning of constraints from (13) to (17), it is �rst necessary
to clarify the role of binary variable γ. For each couple of activities (j, c), we have that γjc
is equal to 1 if j is in progress when c is starting, 0 otherwise. Thus, we make use of the
following double implication, which is guaranteed by inequalities (14)�(17) where ε and M
are two appropriate small and large constants:

γjc = 1 ⇔ tj ≤ tc < tj + τj

Then, constraints (13) indicate the relation between available and allocated operators,
i.e. the sum of resources simultaneously occupied cannot exceed the total number of work-
ers, for each skill i.



Finally, (6)�(8) and (18)�(20) de�ne variables domains. Notice that activities durations
τ are black-box values varying on the positive side of the real axis. This assumes a particular
meaning when the structure of lower-level formulation is analyzed: indeed, if we consider
each τj to be externally calculated (once a value for every xij and yi is �xed by the upper-
level decision-maker) and f2 to be the overall makespan, we can prove our problem to fall
under the standard de�nition of Resource Constrained Project Scheduling Problem (see
Artigues, Demassey and Néron (2008)), with additional due date constraints.

However, due to the a priori unknown values of processing times, an appropriate com-
parison of our formulation with existing ones makes sense only by considering analogous
approaches, as those proposed by Artigues, Michelon and Reusser (2003) and Koné, Ar-
tigues, Lopez and Mongeau (2011), that admit continuous starting time variables and do
not recourse to time horizon discretization. In this respect, it is worth making two ob-
servations: the �rst is that, similarly to authors just cited, we have developed a MILP
formulation of the problem (that is evident when looking at upper-level variables as con-
stants). The second, instead, captures the di�erence between our and previous approaches.
In particular, by exploiting the relations between pairs of activities, we are able to formu-
late the same problem in a new way which di�ers and in some cases outperforms existing
methods in terms of total amount of variables and constraints.

Anyway, the solution of the RCPSP constituting our lower-level optimization is not the
only source of complexity in our procedure. The presence of black-box values calculated
by simulators is an important issue to be addressed. For this reason, we propose a decom-
position approach modeling the problem from a new grey-box optimization perspective.

3 Simulation-Optimization framework

Our solution framework is composed of three main nested blocks as shown in Figure 1.
The most external one is a black-box optimization formulation working on variables yi and
xij , subject to constraints (2)�(4) and (6)�(7). Its objective function, denoted by f̃ , has
the structure of (1) and is calculated every time from the results of inner blocks.

In turn, the second module, represented by the resource constrained scheduling formu-
lation described above, is (approximately) solved at every iteration, immediately after the
execution of the third block, that takes the xij as inputs, runs a parallel simulation for
each activity j, and returns the processing times τj .

Fig. 1. Framework structure
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1 Introduction

In most manufacturing and distribution systems, semi-�nished jobs are transferred from
one facility to another for further processing or �nished jobs are delivered to the customer.
In the latter case, the job completion time is de�ned as the time by which the job arrives
at the customer. Di�erent operations must be carefully coordinated to achieve ideal overall
system performance (Lee and Chen 2001).

Multiple de�nitions of delivery times exist in the machine scheduling literature. Maggu
and Das (1980) �rst consider job transportation in a two-machine �ow shop makespan
problem where job-dependant transportation times occur between the processing stages
and transportation capacity is unlimited. Potts (1980) studies the problem of scheduling
jobs on a single machine with release dates and job-dependent delivery times to minimize
the time by which all jobs are delivered. A similar problem with identical release dates is
studied by Woeginger (1994) for the parallel machine case. Lee and Chen (2001) de�ne
two types of scheduling problems with job delivery where the transportation capacity is
limited in terms of both available number of vehicles and vehicle capacity. Type-1 trans-
portation considers job transportation inside a manufacturing facility between processing
stages and type-2 transportation takes place between the facility and a customer area.
In both cases, jobs share a common delivery time and the objective is to minimize the
makespan. A complexity analysis is presented for single machine, parallel machine, and
�ow shop environments. Chang and Lee (2004) study type-2 transportation for the single
and parallel machine chase with jobs, that require di�erent amounts of space on the trans-
portation vehicle. Furthermore, two separate customer areas exist. Koulamas and Kyparisis
(2010) present a single machine problem where jobs have past-sequence-dependent deliv-
ery times proportional to their waiting time before processing. Polynomial-time algorithms
are presented for multiple optimization criteria. Another de�nition of job delivery times is
presented by Chen et. al. (2016) who investigate a parallel machine problem where a set of
delivery times are given and each delivery time needs to be assigned to an individual job.

In this paper, we consider the delivery aspect when scheduling jobs on identical parallel
machines to minimize the total weighted tardiness (TWT) and delivery times are machine-
dependent. We �rst formally describe the problem and present a mixed integer linear
programming formulation (MILP). Afterwards, a memetic algorithm (MA) is developed
and compared to the MILP as well as multiple well-known scheduling heuristics on a
large set of randomly generated test problem instances. In addition, the impact of the
instance parameter setting, especially the delivery times, on the algorithm performance is
investigated.



2 Problem Formulation

The problem can be described as follows: Given are a set of n jobs j = 1, . . . , n and
m identical machines h = 1, . . . ,m. Each job needs to be processed by one and only one
machine without interruption while each machine can handle exactly one job at a time.
All jobs are available at time zero. Each job j has a speci�c processing time pj , due
date dj , and weight wj . A machine-dependent delivery time qh occurs immediately upon
completing a job on the respective machine. While a job is being transferred, the machine
may already start processing the next job in line. The transportation capacity is assumed
to be unlimited in terms of both vehicle availability and vehicle capacity. The problem
is to determine a schedule π to minimize the TWT (

∑
wjTj). The tardiness of a job Tj

is de�ned as Tj = max{Cj − dj , 0} with Cj being the time job j reaches the customer.
Following the conventional three-�eld-notation by Graham et. al. (1979), the problem can
be expressed as Pm|qh|

∑
wjTj . Since it is well known that problem 1||

∑
wjTj is NP-hard

in the strong sense (Lenstra et. al. 1977), the problem considered here is NP-hard in the
strong sense as well.

To formulate the problem as an MILP, we introduce two binary decision variables xij
with

xij =

{
1, if job j is sequenced immediately after job i,
0, otherwise,

(1)

and yjh with

yjh =

{
1, if job j is the �rst sequenced job on machine h,
0, otherwise.

(2)

Furthermore, a dummy job j = n + 1 is introduced with pn+1 = 0 that marks the end of
the schedule on each machine. The problem can now be formulated as follows:

min

n∑
i=1

wjTj (3)

subject to

n∑
j=1

yjh ≤ 1 h = 1, . . . ,m; (4)

m∑
h=1

yjh ≤ 1 j = 1, . . . , n; (5)

yjh +
n∑

i=1,i6=j

xij = 1 j = 1, . . . , n; h = 1, . . . ,m; (6)

n+1∑
i=1,i6=j

xji = 1 j = 1, . . . , n; (7)

Cj ≥ (pj + qh)yjh j = 1, . . . , n; h = 1, . . .m; (8)

Cj ≥ Ci + pj −H(1− xij) i, j = 1, . . . , n; i 6= j; (9)

Tj ≥ Cj − dj j = 1, . . . , n; (10)

The objective (3) is to minimize the TWT. Constraints (4) and (5) ensure that at most one
job is assigned to the �rst position on each machine. Constraints (6) and (7) determine job
sequences. The completion time of the �rst jobs on machines is calculated by inequality
(8) while (9) de�nes the completion time for the remaining jobs, where H is a su�cient
large number. The tardiness of each job is calculated by inequality (10).



3 The Memetic Algorithm

Our MA adopts the permutation-like representation scheme by Cheng et. al. (1995)
where the genotype consists of job- and partitioning symbols. In the reproduction phase,
the o�spring is generated through a subschedule preservation crossover operator (Cheng et.

al. 1995) and a mutation operator that uses an insertion strategy. The mutation operator
alters individuals by removing a random element from the chromosome and reinserting
it at another random position to facilitate diversi�cation. The neighbourhood structure of
the mutation operator includes changing the position of jobs on a machine, reinserting jobs
on other machines, and changing the overall partitioning.

More importantly, the MA incorporates a local search (LS) to improve all o�spring
solutions after reproduction. In the subsequent hill-climbing phase, the LS is performed
on each generated o�spring solution, that systematically examines all possible, non-trivial
exchanges of elements on the chromosome while the maximum length of the search is
limited. Consistent with the mutation operator, the neighbourhood structure of the LS
includes swapping jobs on one machine, swapping jobs on di�erent machines, and changing
the overall partitioning. Note that the selection of diverging neighbourhoods for mutation
and hill-climbing is crucial to the success of our MA in order to explore the solution space
e�ciently. The new generation is then selected based on �tness of the former population
and the o�spring. The MA terminates after a prede�ned number of iterations without
improvement.

4 Computational Results

In our preliminary tests, we use the proposed MILP and several existing heuristics as
reference for comparison. The heuristics include the apparent tardiness cost (ATC) rule
(Vepsalainen and Morton 1987), the modi�ed due date (MDD) algorithm by Alidaee and
Rosa (1997), and the KPM heuristic (Koulamas 1994). We implemented the MILP in IBM
ILOG CPLEX Optimization Studio 12.6 with a time limit of 30 minutes and a maximum
of 8 threads. The heuristics and the MA were implemented in C++. Experiments were
conducted on a personal computer with an AMD Opteron 6282 SE processing unit with
2.6GHz and 128GB RAM. Results for the MA were obtained by keeping the best objective
value out of �ve independent runs.

The problem instance data including n,m, pj , wj , and dj were generated based on the
method proposed by Potts and Van Wassenhove (1982). Moreover, machine delivery times
are uniformly distributed with qh ∼ [1, 50] for small delivery times and with qh ∼ [101, 300]
for large delivery times. In total, we have 40 con�gurations. For each of them, �ve problem
instances are generated, which results in 200 instances.

Table 1 shows the average relative percentage deviation (ARPD) achieved by each
approach. The ARPD is de�ned as Z−Z∗

Z∗ ×100, where Z is the objective value obtained by
the respective solution approach and Z∗ is the best found solution among all approaches.
Note that the results for all individual due date settings were summarized to stress the
impact of delivery times. Additionally, the average CPU time required by the MA is given.

It can be seen that the MA, in general, outperforms the other approaches. On the
other hand, the computing time increases signi�cantly with the problem size. For n = 20,
the MILP found for 3 out of 40 instances slightly better results than the MA. For n =
100, the MILP solutions are not competitive and no feasible solutions were generated for
n = 200 within the 30 minutes. The delivery times appear to have a strong impact on
the performance of the solution approaches since the heuristics perform, compared to the
MA, considerably worse for instances with small delivery times. This e�ect deserves further
investigation.



Table 1. Computational Results

Problem Setting ARPD CPU Time
n m qh ATC KPM MDD MILP MA [sec]

20 5 [1,50] 14.17 11.17 43.31 0.32 0.02 0.41
20 5 [101,300] 0.68 1.21 3.91 0.38 0.00 0.38
100 5 [1,50] 23.13 28.67 109.06 1021.94 0.00 68.23
100 5 [101,300] 6.98 27.03 69.82 302.93 0.00 102.46
100 20 [1,50] 27.38 13.98 48.86 84.36 0.00 68.76
100 20 [101,300] 0.78 0.35 3.34 34.96 0.00 100.04
200 5 [1,50] 21.29 55.12 159.58 � 0.00 587.86
200 5 [101,300] 14.13 40.37 111.47 � 0.00 699.98
200 20 [1,50] 34.80 26.60 72.74 � 0.00 595.77
200 20 [101,300] 3.59 2.83 18.10 � 0.00 685.49

Avg. 14.69 20.73 64.02 240.81 0.00

To conclude, the MA shows promising results in our preliminary tests. Nonetheless,
extensive tests and comparison with other metaheuristics are desirable.
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1 Introduction

Air traffic management involves the coordination of flights in a particular region of the
world with the objective of guaranteeing their safety while possibly reducing delays. There
usually exist different levels of responsibility.

For example, the Air Traffic Control (ATC) provided by an airport handles airplanes
on the ground and in the controlled airspace in the proximity of the airport while the
Air Navigation Service Providers (ANSP) manage the air traffic of a bigger region or an
entire country. For a discussion of the different issues arising in air traffic management see
(Allignol, 2012). One of the critical tasks of an ANSP is to provide the Air Traffic Flow
Management that consists of preventing overcrowded portions of air space while trying
to exploit their maximum capacity. In fact, the air space within a country or a region is
subdivided in sectors which are assigned to specific controllers. Each controller can handle
no more than a given number of airplanes at a time. Consequently, each sector has its own
capacity, that is the maximum number of airplanes that can occupy the sector in a given
time. Note that not only capacity, but even the shape and number of sectors varies from
time to time. For instance, at peak hours the number of sector increases.

The number of airplanes that will occupy each sector in a given time can be forecast
taking into account the timetable and the planned route of the airplanes. A hotspot is a
sector in which the forecast number of airplanes is greater than its maximum capacity in
at least one point in time. The task of an air traffic flow manager is to prevent hotspots
while guaranteeing an efficient utilization of the air space.

The official flight plans of airplanes may already give rise to hotspots. In addition, the
timetable changes when one or more airplanes are delayed and, as a result, more hotspots
might appear.

When this happens, the air traffic flow manager has to modify the flight plans of many
airplanes in order to avoid hotspots and reduce delays. More specifically, the manager can
delay some take-offs, or reduce speeds on certain trip segments for airborne aircraft. This
procedure is usually carried out in a heuristic way and with little software support, leading
most of the time to suboptimal solutions.

2 A MILP model for the hotspot problem

The MILP model for the Hotspot problem resembles very closely the classic job-shop
scheduling problem with blocking and no-wait constraints (Mascis and Pacciarelli, 2002)
exploited in several papers for different transportation problems.

When airborne an airplane f will traverse an ordered sequence of sectors (s1, s2, . . . , sq).
We define a route as an ordered sequence of pairs aircraft-sector, say O(f) = ((f, s1), (f, s2),
. . . , (f, sq)) = (v1, v2, . . . , vq). An element v ∈ O(f) is then a pair (f, s), where f is a flight
and s a sector. With each element v we associate a minimum traversing time λv and a
maximum traversing time Λv. To simplify the notation, if the route of an airplane f starts



at an airport a, then we also consider a as a special sector and we have the special pair
(f, a) in O(f). Similarly, the destination airport will be represented as a special sector.

Consider now the set of all flights F , and let O be the set of sector occupations by all
flights in F . With every element v = (f, s) ∈ O we associate a variable tv, representing
the time airplane f enters sector s. Now let u, v ∈ O correspond to the occupation of two
successive sectors in the route of flight f . Then the following constraints must hold:

λu ≤ tv − tu ≤ Λu. (1)

Now, consider a set of distinct flights F̄ = {f1, . . . , fq} traversing a sector s. For each
flight fi, let ai be the time the flight enters s and di the time the flight exits s (that is, it
enters the next sector). Now, assume that the capacity cs of the sector is not enough to
accommodate all flights in F̄ , namely cs < |F̄ |. Then, at least for a pair f , g of flights in
F̄ , f and g do not meet in s, namely either f exits s before g enters s or vice-versa. This
can be expressed by the following disjunctive constraint:

(ag − df ≥ 0) ∨ (af − dg ≥ 0). (2)

The above disjunctive constraint can be linearized in standard fashion by introducing
a binary variable yfg for each ordered pair of flights (f, g) ∈ F̄ × F̄ , such that yfg = 1 if f
exits s before g enters and yfg = 0 otherwise. Then, for all pairs in F̄ , constraint (2) can
be replaced by the following conjunction of linear constraints:

(i) yfg + ygf = 1, {f, g} ⊆ F̄
(ii) ag − df ≥ −M(1 − yfg) (f, g) ∈ F̄ × F̄

(3)

where M is a suitably large positive constant.
Now, for {f, g} ⊆ F̄ , we introduce a binary variable xfg and we let xfg = 1 if f and g

meet in s, and xfg = 0 otherwise. Then, if cs < |F̄ |, we must have:

∑
{f,g}⊆F̄

xfg ≤
(

|F̄ |
2

)
− 1 (4)

so that at least a pair of flights in F̄ do not meet in s. Because constraint (2) actually
holds only if f and g do not meet in s, which in turn depends on the value of xfg, we can
suitably modify (3.i) to take this into account:

yfg + ygf = 1 − xfg. (5)

So, a complete formulation for a set of flights F with their routes traversing a set S of
sectors can be obtained by considering now constraints (1) for all routes, and constraints
(3.ii), (4) and (5) for all sectors s ∈ S and all set F (s) ⊆ F of flights exceeding the capacity
cs of s. Let P ⊂ Rp be the set of points (x, y, t) satisfying all such inequalities, including the
integer stipulation on variables x, y: then our problem reduces to {min f(t) : (x, y, t) ∈ P}.
The objective f(t) may vary form instance to instance, but for our first set of experiments
it will simply be the (weighted) delay at destination.



3 Solution approach: sketch

In principle, problem {min f(t) : (x, y, t) ∈ P} could be solved by simply resorting to
some general purpose commercial solver. However, formulation P has two major sources
of complexity which do not allow such a simple approach, already for small-medium size
realistic instances. First, the family of constraints (4) can grow exponentially with F .
This is tackled in a standard fashion by resorting to the so called “lazy constraints” trick.
Namely, constraints are generated dynamically during the search as lazy constraints - i.e.
only if they are violated by the current integer feasible solution.

Next, in order to make the constraint redundant for certain values of the binary vari-
ables, in (3.ii) we make use of a second, infamous trick, namely we include the large coef-
ficient M (the “big-M trick”). In turn, this makes the formulation very weak and prone to
return poor bounds - and thus often intractable search trees.

Our approach to tackle this problem and solve {min f(t) : (x, y, t) ∈ P} extends the
methodology first developed in (Lamorgese and Mannino, 2016). In particular, we exploit
Benders’ decomposition to obtain a (master) problem only in the binary variables - plus a
few continuous variables to represent the objective function. The decomposition allows us
to get rid of big-M coefficients (at the cost of an increased number of linear constraints).
Moreover, the constraints of the reformulated master correspond to basic graph structures,
such as paths, cycles and trees. The new formulation is obtained by strengthening and
lifting the constraints of a classical Benders’ reformulation1.

Computational experiments. In preparation.
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1 Introduction and problem statement

The assembly of bodywork parts for the automotive sector is operated in dedicated
assembly lines implementing the sequence of assembling operations through specific join-
ing technologies (e.g., spot welding, clinching, hemming, etc.). These assembly lines are
organized as a set of stations executing assembly operations, input/output stations to load
components and unload final parts, and a transportation device moving parts within the
line. The latter is usually a 7-axis robot shared among the stations. In this paper we con-
sider an assembly line where a batch of parts has to be processed. Assembly operations are
executed by automatic devices while load/unload operations are executed manually. The
line has a single transportation robot to be shared among the stations and the proposed
approach aims at scheduling its missions. Due to the manual execution of load/unload
operations, uncertain process times must be considered, thus, the problem under study
is a Stochastic Resource-Constrained Flow-Shop Scheduling Problem to minimize the time
needed to complete a batch of products, i.e., the makespan. In the need to address uncer-
tainty, specific approaches must be adopted. Examples are the ones optimizing the expected
value of the makespan (Fernandez 1995, Igelmund and Radermacher 1983). Nevertheless,
the minimization of the expected value does not protect against rare but very extreme sce-
narios, as discussed in (Alfieri et al. 2012) and (Manzini and Urgo 2015) for Make-to-Order
processes. To this aim, we propose a proactive-reactive approach providing a baseline sched-
ule and looking for the optimal sequence of the robot considering the actual duration of
operations during the execution of the assembly process. Differently from other approaches
of this class, e.g., (Davari and Demeulemeester 2016), the proposed approach identifies
disjunctive constraints without explicitly deciding the starting times of operations.

2 Solution approach

Consider an Activity-on-Node (AoN ) representation of a flow-shop where V = {0, 1, ..., n}
is the set of nodes representing operations and E = (i, j), i, j ∈ V the set of arcs modeling
precedence constraints. Operation durations are modeled through general and indepen-
dent random distributions p̃ = p̃0, . . . , p̃n, pi being a realization of distribution p̃i and
p = p0, . . . , pn a realization of the entire set p̃. Notice that, if an operation is determin-
istic, the described formulation still applies with a single value as support. The flow-shop
under study has a limited availability of the transporter and hence we consider a single
resource with unary availability. We address the scheduling of shared transporter’s mis-
isons through the decisions over a set of disjunctive constraints named EDC (additional
to the ones in E), resolving resource utilization conflicts.The uncertainty embedded in the



problem is addressed by adopting a proactive-reactive approach made up of two steps. The
first step provides the baseline schedule as the optimal sequence of the robot considering a
given duration of the uncertain operations (e.g., a quantile can be used). The second one
is supposed to operate while the baseline schedule is being operated, every time an incon-
gruity between the fixed operation duration and the one experienced in the execution of
the schedule occurs. It checks whether the baseline schedule is supposed to remain optimal
and, if needed, reacts by inverting some of the disjunctive constraints previously selected.
The two steps are described in detail in the following.

2.1 Proactive step

The proactive step hypothesizes that the duration of operations is fixed. In case of un-
certain durations this value can be decided by fixing a quantile q obtaining pq = pq0, . . . , p

q
n,

without considering any anticipation of associated uncertainty. The scheduling problem is
solved using the deterministic approach presented in (Demeulemeester and Herroelen 1992).
The baseline schedule obtained provides the set of additional constraints EDC . In addition
to this, a sensitivity analysis on the solution is also executed. For each precedence con-
straint in EDC , the range of variability of operation durations is calculated such that, if
the durations go outside this range, then the decision taken for the considered disjunctive
constraint is not optimal anymore, and thus the opposite constraint should be considered.
Consider the constraint (i, j) ∈ EDC assuming durations pq, and the eligible times of op-
erations i and j, Qpq

i and Qpq

j , defined as the instants on which each operation can start
in terms of all the precedence constraints in E, without considering any of those in EDC .
Define ∆pq

i,j = Qpq

i − Q
pq

j as the difference between the eligible times of two operations
linked with a disjunctive constraint (i, j). If the decision on this disjunctive constraint
is optimal, the associated makespan is shorter than the one considering the opposite di-
rection, i.e., S(i,j)

n ≤ S
(j,i)
n , where S(i,j)

n is the starting time of operation n, considering
disjunctive constraint (i, j). Clearly, this depends on the duration of the operations in pq.
The makespan takes advantage of an inversion of the disjunctive constraint if and only
if the lateness of i, compared to Qpq

i , is enough to cause a delay of the makespan that
is longer than the delay caused by an inversion without any lateness of i. More formally,
the inversion is effective if there is a difference between the eligible times that is greater
than ∆T

i,j = ∆pq

i,j − (S
(i,j)
n − S(j,i)

n ). The threshold ∆T
i,j will be used in the reactive step for

evaluating the optimality of the disjunctive constraint (i, j) during the process execution.

2.2 Reactive step

The reactive step considers a vector of realizations p for the durations of the operation
and grounds on the definition of a state space Ω modeling the execution of the operations in
the flow-shop. The execution of the operations can be modeled through a sequence of states
over time t, ω(p, t) = (O,F, S, dO) ∈ Ω. Each state is fully described by the set of operations
in execution O, their starting times S and their durations dO(i),∀i ∈ O, as well as the set
of completed ones F . Algorithm 1 models the execution of operations starting from t = 0
with initial state ω(p, 0) = (0, ∅, 0, 0) and finishes when all the operations are completed,
i.e., F = V (steps 1-2). Every time an operation is completed, the set F is updated (step 4)
and, if there is an operation i that can start because all its predecessors are completed (step
6), it is put into execution and added to the set of ongoing operations O (step 11). On the
contrary, if its execution is constrained by the completion of another operation k through
a decision on one disjunctive constraint (k, i) ∈ EDC (step 7), then the algorithm checks
whether (k, i) remains optimal in relation to the realizations in p. This evaluation is done
through the estimation of the probability that the actual difference between the eligible



Reactive-Procedure

1 ω(p, 0) = (0, ∅, 0, 0)
2 While F ! = V
3 t = t+ 1
4 If dO(i)− S(i) = pi,∀i ∈ O → F = F + i
5 Else dO(i) = dO(i) + 1
6 If i 6∈ O, i 6∈ F and j ∈ F,∀j ∈ (j, i)
7 If (k, i) ∈ EDC and P(∆p

k,i(t) > ∆T
k,i) > T

8 EDC = EDC − (k, i) + (i, k)
9 O = O + i, S(i) = t

10 Else
11 O = O + i , S(i) = t

Algorithm 1: Reactive step algorithm.

Operation Mode Min Max

I 6 5 29
T1 13 − −
A 10 − −
T2 9 − −
O 5 4 21

Table 1: Operation duration in
seconds.

times exceeds the threshold previously identified: P[∆p
k,i(t) > ∆T

k,i]. If this probability
exceeds a threshold T , the reaction is applied by inverting the constraint (k, i) (steps 8-9).
The P[∆p

k,i(t) > ∆T
k,i] is estimated considering the duration of the operations in O preceding

k and their distributions p̃. The probability that ∆p
k,i(t) is greater than ∆T

k,i is equal to
the probability that the difference between the finish time of the last preceding operation
of k and the eligible time of i is greater than ∆T

k,i, conditioned on the ongoing durations
in dO. We are looking at the residual duration probability of the operations preceding k:
P[∆p

k,i(t) > ∆T
k,i] = P[maxl∈prec(k)(dF (l)) − Qi > ∆T

k,i | dO(l)] = P[maxl∈prec(k)(dF (l) −
dO(l)) > ∆T

k,i −Qi], where prec(k) indicates an operation preceding k.

3 Application

The proposed approach is applied on a single product flow-shop assembling a hood
bodywork. The execution of the process is modeled using the AoN representation in Fig-
ure 1. The process consists of five operations, the first and the last ones model the loading
(I) and unloading (O) of the parts, executed manually. In the third operation (A), a re-
inforcement bar is added through a spot welding process, while the second and fourth
operations are handling tasks (T1 and T2 respectively) operated by the 7-axis robot mov-
ing the hood in the line. The two manual operations follow a triangular distribution, while
the others are deterministic (Table 1). The triangular distributions consider an average ex-
ecution duration as the mode, very close to the minimum value, and a worst-case duration
as the maximum value, modeling the occurrence of a problem or a delay. The approach
addresses the conflicts between transport operations in the production of a whole batch.
These conflicts are depicted with dotted arcs in Figure 1 for a single transport of the first
job, only (T21), but are repeated for the whole batch. In addition, we set the threshold T to
0.5, but let the quantile q, used for fixing the duration in the proactive step, vary between
0.1 and 0.9. We evaluate the performances of the approach in terms of the mean square
error compared to the minimum makespan solution obtained with complete knowledge
of the durations of operations using 10000 runs. In addition, we estimate the approach’s
performances without the reactive step and compare the results. Aggregated performances
for different lengths of the batch (from 5 to 50 jobs) are included in Table 2. Grounding on
these results, the proactive-reactive approach always performs as good or better than the
proactive schedule without reaction (PR and P-only in Table 2). Indeed, if the reactive step



P-only PR
Quantile 0.1 0.5 0.9 0.1 0.5 0.9

# jobs
5 5.473 5.473 0.917 0.917 0.917 0.917
10 4.963 4.963 0.980 0.980 0.980 0.980
20 7.445 7.445 1.347 1.347 1.347 1.347
50 8.456 8.456 1.865 1.865 1.865 1.865

Table 2: Aggregated results of the application. Fig. 1: AoN process representation.

does not apply any modification, the baseline solution is automatically applied, as depicted
for the 5 jobs and 90th percentile case. The impact of the number of jobs and the percentile
is also analyzed: the percentile impacts on results of the only-P approach, with better per-
formances for high values. On the other hand, this parameter does not affect the reaction’s
performance due to the uncertainty source being limited to the first and last operations.
The performances get worse as the number of jobs increases for both approaches. As a
conclusion, the proactive approach provides a good baseline schedule, nevertheless, the re-
action step improves the performances when used to manage the occurrence of unexpected
events, providing a good support in the line’s real-time management.

4 Conclusions

In this article we propose a proactive-reactive approach to schedule a semi-automatic
assembly system, with a specific focus on the definition of the reaction policy. The approach
has been tested on a five-operation process with good results, demonstrating that the
application of the reactive step significantly improves the performances of the baseline one.
Future developments will address the investigation of (i) completely manual processes or
(ii) tuning the threshold for the reactive step to match user’s aversion to risk and (iii) the
application of additional disjunctive constraints modeling the schedule of machines besides
handling operations.
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1 Introduction

While timely completion is an important factor of project success, projects often exceed
their predefined deadline. In order to protect this deadline, a project buffer can be placed
at the end of the project. Further, during the project control process, the project progress
can be evaluated using tolerance limits that generate warning signals when the project
deadline is expected to be exceeded.

In this study, four methods that use different perspectives to construct tolerance limits
for the schedule progress of projects are empirically validated on the large and diverse
dataset of Batselier & Vanhoucke (2015). Each of the used perspectives, namely the time,
cost, resource and risk perspective, consider project-specific information to determine the
allowable buffer consumption during project execution. Based on this allowable buffer con-
sumption, threshold values for the schedule performance can be set for each project phase.
These threshold values generate warning signals when the project deadline is expected to
be exceeded, such that the project manager can take corrective actions to get the project
back on track. The limits using a time, cost and resource perspective have been proposed in
recent literature. Their performance has been evaluated using artificial data. First, the time
perspective to determine the allowable buffer consumption has been introduced by Colin
& Vanhoucke (2015). Since this is the most straightforward approach that requires the
least project-specific information, the resulting limits, which are referred to as linear lim-
its, act as a benchmark for the other perspectives. Second, Martens & Vanhoucke (2017a)
proposed a cost perspective by setting the allowable buffer consumption based on the cost
accrue of the project and compare the resulting cost limits to the linear benchmark limits.
Further, Martens & Vanhoucke (2017b) use the resource availability and requirements in-
formation to determine the allowable buffer consumption using a resource perspective to
construct resource limits. Finally, in this study, we propose a novel approach that employs
a risk perspective to set the allowable buffer consumption and to construct risk limits. For
each type of limits, we evaluate the ease of implementation and performance for real-life
projects. These limits are discussed in greater detail in section 2. In the remainder of this
section, a brief introduction to project control is given.

Since uncertainty and variation during project execution inevitably result in deviations
from the plan, projects often do not finish on time or within budget. In order to protect
the project deadline from these deviations, a project buffer can be placed at the end of
the project. Moreover, the project control phase is an important component of Integrated
Project Management and Control that focuses on detecting problems and/or opportunities
during project execution such that corrective actions can be taken to get the project back



on track (Vanhoucke 2014). The project control process consists of three parts, namely
monitoring the project progress, evaluating this progress, and taking corrective actions
when necessary. A well-known technique to monitor the cost and time progress of projects
is Earned Value Management (EVM, Fleming & Koppelman (2010)). This methodology
provides a birds-eye view on the project progress by aggregating the activity progress
information on a higher work breakdown structure (WBS) level. Since both the schedule
and cost performance metrics provided by EVM are cost-based metrics, Earned Schedule
(ES, Lipke (2003)) has been developed as an extension that focuses on the time aspect
of projects. In this study, EVM/ES schedule performance metrics are used to monitor the
project progress. Further, project control tolerance limits are a tool to evaluate the project
progress and to decide whether corrective actions are required. For each project phase,
threshold values for the schedule performance are set. When the measured progress is
below this threshold, the project is expected to exceed its deadline and a warning signal is
generated. When a signal is generated by the tolerance limits, the project manager should
take corrective actions to get the project back on track. In section 2, the different types
of tolerance limits are briefly discussed. Further, results of the empirical experiment are
described in section 3.

2 Tolerance limits for project schedule control

The tolerance limits that have been proposed in recent literature can be classified in
three groups, namely static, statistical and analytical tolerance limits. First, static tolerance
limits are constant throughout the entire project life cycle and do not consider any project-
specific or historical information. These limits are determined by applying rules of thumb
and are introduced by Goldratt (1997) and Leach (2005). Further, statistical tolerance
limits apply concepts of Statistical Process Control (SPC, Shewhart (1931)) and require
historical information or Monte Carlo simulations to define the desired state of the progress
at each project phase. The statistical tolerance limits introduced in literature have been
validated using simulation studies (Colin & Vanhoucke 2014, Colin & Vanhoucke 2015,
Colin, Martens, Vanhoucke & Wauters 2015) or empirical data (Aliverdi, Moslemi Naeni
& Salehipour 2013, Bauch & Chung 2001, Leu & Lin 2008, Lipke & Vaughn 2000, Wang,
Jiang, Gou, Che & Zhang 2006). Finally, analytical tolerance limits require project-specific
information that is readily available during the scheduling phase to determine the threshold
values for each project phase. Since these limits do not require historical data or Monte
Carlo simulations, they are easier to implement than statistical tolerance limits. Moreover,
by including project-specific information, they are more accurate than static tolerance
limits. This type of tolerance limits has been proposed by Colin & Vanhoucke (2015),
Hu, Cui, Demeulemeester & Bie (2015), Martens & Vanhoucke (2017a) and Martens &
Vanhoucke (2017b).

The tolerance limits reviewed in this study are analytical tolerance limits, and follow
the same general procedure to be constructed. First, for each project phase, the allowable
buffer consumption is determined. This reflects the amount of buffer that can be consumed
at each project phase during execution without endangering the project deadline. Sec-
ond, the buffered planned progress (BPP) curve is determined. This curve represents the
project progress when, at each project phase, the allowable buffer consumption is entirely
consumed. The construction process for the BPP-curve is illustrated in Figure 1. Finally,
the threshold values are constructed by comparing the BPP to the planned progress. Con-
sequently, when the actual progress is below the BPP, the project is expected to exceed
its deadline and a warning signal is generated. For a more detailed discussion on the con-



struction of this type of tolerance limits, the reader is referred to Martens & Vanhoucke
(2017a).
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Fig. 1. Determining the BPP-curve.

The four different perspectives all propose a different approach to determine the allow-
able buffer consumption. The construction of the BPP and the calculation of the threshold
values, on the contrary, do not differ. First, the linear limits assume that the project buffer
can be consumed proportionally with the time, e.g. at x% of the project makespan, x% of
the buffer can be consumed. Since these limits do not consider the amount of work that
has to be completed during each project phase, cost limits have been introduced. These
limits determine the allowable buffer consumption proportionally with the cost of each
phase. Further, resource limits have been proposed to account for the impact of resource
conflicts on project delays. Finally, we introduce the risk limits, which consider the risk of
each project phase to determine the allowable buffer consumption. Two steps have been
implemented to determine the aggregate risk of each project phase. First, a risk value is
assigned to each project activity. This risk value is defined as the product of the activity
duration variability (σ) as estimated by the project manager and, since activity delays may
affect the actual start of successors, the number of succeeding activities (#succ). Second,
the risk of each project phase is determined by aggregating the risk values of the sched-
uled activities at each phase. The allowable buffer consumption at each project phase is
determined by the risk limits proportionally with this aggregated risk.

3 Research study and preliminary results

In this study, we discuss the merits and pitfalls of using artificial and empirical data to
evaluate the performance of project control tolerance limits. Further, a new perspective,
e.g. a risk perspective, is introduced to assign portions of the project buffer to each project
phase based on the risk level of these phases. We determine the aggregated risk level of
each project phase by considering the estimated activity duration variance and the position
of these activities in the baseline schedule. Finally, we compare the performance of the
different perspectives and evaluate their ease of implementation.

The artificial data used in the simulation studies consists of 900 project networks with
varying topological network structures, generated using the project network generator
RanGen (Demeulemeester, Vanhoucke & Herroelen 2003). Risk and variability is added
using generalised beta distributions for the activity durations. Further, the empirical data
consists of a wide variety of real-life projects in different industries from the database of
Batselier & Vanhoucke (2015). In this database, the baseline schedule, risk analysis and
project control data of the real-life projects are listed.

The empirical experiment conducted in this study confirms the result of previous sim-
ulation studies performed by Martens & Vanhoucke (2017a) and Martens & Vanhoucke



(2017b), e.g. that including project-specific information improves the efficiency of tolerance
limits for project control. However, deploying the cost perspective improves the efficiency
only slightly in our empirical experiment. Further, while deploying the resource perspec-
tive entails additional effort compared to the other perspectives, this effort enhances the
efficiency substantially. Finally, the novel risk perspective improves the efficiency of the
tolerance limits more than the cost perspective, and is hence an appropriate alternative
when projects are not constrained by scarce resources.

In general, this experiment has shown that including project specific information is an
effective approach to improve the project monitoring efficiency. Further, the results of this
study can be used by project managers to determine which perspectives they can deploy
to monitor their projects.
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1 Looking for a metamodel, context-based, approach to project risk manage-
ment

This paper outlines a metamodel approach, context-based, to project risk management
based on McFarlan model (McFarlan, 1981, M. Baldini et al., 2002), built by the authors
analyzing a set of information technology projects along the entire life cycle. The model
considers each project as characterized by a specific risk level, depending on the following
risk factors:

• Size (project/product volume);
• Innovation extent (technology, process, organization, and so on) of project products/solutions

to be implemented;
• General complexity (impact of induced changes on stakeholders organizations and their

relevant operating processes and/or impact on management of contractual constraints
and clauses between customer/owner and supplier/contractor).

Evaluating the risk factors, the metamodel allows to identify:

• The main project risk (or structural risk);
• The strategy of most suitable countermeasures to be implemented in order to re-

strain negative effects on success criteria values and, as a consequence, on project/product
performances;

• The typical countermeasures, more focused on the proper action, can be selected
progressively depending on suitability level of its own management approach;

• The specific countermeasures; considering typical countermeasures generated by
metamodel, project manager can identify specific actions to mitigate each project risk.

2 The e-government program launched by the Italian Public Administration
and Innovation Department

This model was applied to the Italian e-government program, a process of innovation of
Italian local public administrations (Regions, Provinces, Municipalities etc.) initiated and
funded in the mid-2.000s. The Program promoted the implementation of projects from
Local Public Administrations aimed to delivery e-government services and infrastructure
for citizens and firms.



One of the main focus of the e-government program was the implementation of projects
not only by individual local public administrations but mainly from a “group of admin-
istrations” with the possibility of direct or indirect participation to the program. Indirect
participation was about the reuse of products and solutions implemented by other local
public administrations.

The funding of the program was €120 million, covering 134 projects (selected out of
approximately 400 submitted projects) with a total value of approximately €500 million.
The program involved 20 Regions (100%), 93 Provinces (90%), more than 170 Mountain
Communities and more than 4,000 Municipalities (49%).

3 The risk survey process on co-financed e-government projects

3.1 Context-based risk analysis and selection of the “most-likely” effective
countermeasures

The model structure has the following components:

a. Summary: Summary report containing a dashboard of indicators whose values come
from the risk analysis carried out at the project;

b. Detection Model: Form for classification of project risk factors (by importance). Most
of the data concerning these factors are carefully extracted from the executive plan
(mandatorily prepared by the proponent entity, according to a predefined standard)
and minimally integrated with further data from the analysis and interpretation of the
project (done by the authors, as program assessors);

c. Countermeasures: Form dedicated to point out the basic countermeasures, suggested
by the authors and/or adopted by the project, according to the specific structural risks.
In particular, the initial indication of suggested countermeasures was completed during
the project implementation, with information concerning their implementation.

The risk analysis process involves the following steps:

• Filling the Detection Model worksheet;
• Filling and checking the Countermeasures Identification and Implementation worksheet;
• Detection of risk indicators through the summary report dashboard.

Detection Model
This form contains a checklist dedicated to detect the project risks; the description of

such type of risks is listed in a worksheet table whose columns have the following meanings:

• Risk factors: list of the factors to be detected for the purposes of the risk analysis;
• Drafting criteria: they represent the evaluation of the correspondent risk factor,

according to the project team leader point of view. Each risk factor was evaluated
according a scale of 3 values (G=big; M=medium; P=small), with the value limit of
each class defined by analyzing the statistical distribution of projects;

• Source: field used to indicate if data are extrapolated in objective way from the ex-
ecutive plan or, alternatively, submitted according to a specific interpretation by the
project team.

Each element of the checklist contributes to define the criticalities of the projects in
terms of Technological Complexity (TC), Organizational Complexity (OC) and Dimension
(DIM). In particular:

• the risk factors evaluation such indicated in Detection Model allows to identify the
most critical situations;



• the identification of specific strategies for the risk management (to prevent or to control
them) allows to get information concerning the types of countermeasures more suitable
according the characteristics of the specific project.

The identification of the types of countermeasures has the purpose:

I. To select the prevailing approach, devoted to:
• contain both organizational issues and integration problems with other initia-

tives/projects (IE-External Integration);
• mitigate both organizational issues and management problems which are internal

to the project itself; such problems also include issues caused by the multiplicity
of stakeholders involved in the project (II-Internal Integration);

• ensure formal and rigorous management of the project, either at the initial state
and during its execution (PC-Formal Planning);

• control, in qualitative way, processes and products realized within the project (QC-
Formal Quality Assurance and Control).

II. Selecting the countermeasures mix, to specifically adopt as the best strategy, belonging
to the above mentioned types, for risk mitigation (higher results in equal effort). Such
approach allow to correlate the assessment of risk factors with the structural risk of the
whole project (risk level) and the prominent approach for risk mitigation. In particular:
a. the structural risk of the whole project has been rated on a 5-level qualitative

scale (Very Low, Low, Medium, High, Very High);
b. The evaluation of risk categories was represented on an only 2-level scale (low

and high) with the aim to reduce the potential combinations generated to identify
the strategy for risk mitigation indicated on the risk mitigation approach table;

c. The strategy for risk mitigation was focused taking into account the weighted
configuration of the Risk Factor Assessment and it is expressed on a scale of 3-level
values (Low, Medium, High) for each management approach (External Integration,
Internal Integration, Formal Planning & Control).

Component “Countermeasures”
Each Project Manager uses checklist to self-assess project risk factor identifying main

risk and suitability level of each one of the following management approach: IE-External
integration, II-Internal integration, PC-Formal project management and QC-Quality as-
surance or control.

Based on suitability level of each management approach, metamodel allows to identify
the typical most suitable countermeasures to each specific project; Project Manager may
accept or modify or integrate the suggested typical countermeasures.

3.2 Risk analysis summary and countermeasures actual application rate

The last step of metamodel has to do with verifying the actual compliance of suggested
countermeasures and their application rate. In addition to project manager evaluation,
metamodel allows independent assessor evaluation, aimed to mitigate subjective evaluation
of project manager.

Independent assessor evaluation aimed to understand the suitability of risk management
actions identified by project manager. In order to perform that, assessors analyze project
documentation and may modify or integrate selected countermeasures defined from project
manager.

In order to perform an effective audit of applied countermeasures, metamodel pro-
vides a short description for each countermeasure in terms of: [i] Countermeasure, name of
countermeasure; [ii] Meaning, short description of countermeasure; [iii] Objective evidences,



examples of objective evidences that should be found to prove countermeasure was actually
applied.

For each selected typical countermeasure (defined from project manager or integrated
from assessor) the metamodel allows to indicate actual level of applied countermeasure: 0
= not applied; 1 = partially applied, 2 = widely applied; 3 = totally applied.

Matching applied countermeasures versus planned ones allows to define application
rate.

3.3 Outcome achieved from more than one hundred similar projects

The metamodel outlined in this paper has been implemented in more than 130 projects;
though all of them were aimed to design e-government services to local public administra-
tion, they were all different in terms of dimension (volume), cost and duration.

From this experience we can infer two order of results: first result is methodological and
it is about a large and coherent application of this model to a large and distributed set of
projects; second result is about impact of model on project management performances.

About the first order, we tried the “easy for use” and applicability of model in all
projects with different contexts and dimensions. The metamodel contributed to spread
risk management culture in project management teams. Moreover, the metamodel counter-
measures database has been enhanced by the results of the most common countermeasures
applied in the projects.

About the second order, the results analysis, ongoing and final, of e-government program
highlighted as projects which applied suitable countermeasures had a positive impact on
time constraint (cost was “out of scope” of assessor control and quality was measured ex-
post in terms of stakeholder benefits on about 45 projects), with less delay to achieve the
intermediate milestones and to complete the entire project.

Picture below, taken from periodic report of e-government program, shows an example
of correlation between suitability of applied countermeasures and projects delay. In that
picture we can see as projects with “suitable” or “most suitable” countermeasures appli-
cation rate have less delay than projects with “not suitable” countermeasure application
rate.

For instance, projects which showed (the minority, at a certain time) a “most suitable”
countermeasures application rate had, as an average, 82% progress and 12 months delay,
while projects which showed (at a certain time) a “not suitable” countermeasure application
rate had 60% progress and 16 months delay.

4 Conclusions and the way forward

The unusual case of a set of similar, contemporary and independent projects (more than
one hundred), was likely to be an empirical proof of the consistent effectiveness of Risk
Management in improving project patterns. While such “experiment” is not easy to be
repeated on a so large number of projects, because projects have the characteristic to be a
“single shot” items, the authors replicated a similar (and someway more sophisticated) ap-
proach while monitoring a large program (in a multi-years, multi-projects, multi-contracts
environment) for the ICT reengineering of a main governmental Institution. Diagnosis was
excellent, but unfortunately therapy (i.e. countermeasures) not always applied: program
stakeholders (owner and contractors) did not “buy” the approach.

Anyway, the proof of evidence about benefit on projects by using the suggested risk
management approach (or anyone in the literature) would encourage all the project man-
agers and their sponsor to consider it a mandatory task in performing the job they were
assigned to.



 

Fig. 1.

Future plans to improve the above-described risk management approach, would consider
the paradigm shift for Project Management 2.0 (Kerzner, 2015), in order to insert in the
model the evaluation of: (i) soft skill competence in the project team, mainly for the
project manager, project team and “sponsor”, (ii) communication plan and its contents
for the various stakeholder clusters, (iii) consistency of expected benefits, both monetary
and not monetary ones. In addition, final correlation between the applied strategy for risk
countermeasures and project performance, including also final success (proven benefit for
stakeholders) should be thoroughly exploited.
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This abstract is focused on the Periodically Aggregated Resource-Constrained Project
Scheduling Problem (PARCPSP) (Morin et. al. 2017b), that can be seen as a continuous-
time variant of a restricted Resource-Constrained Project Scheduling Problem with par-
tially renewable resources (RCPSP/π) (Böttcher et. al. 1999). The purpose of this work is
to compare an existing compact formulation with a new extended formulation.

The PARCPSP is defined as follows. A set A of activities, subject to end-to-start
precedence relations E ⊂ A×A, and a set R of renewable resources are given. During its
processing (duration pi), activity i ∈ A requires ri,k units of resource k ∈ R (capacity bk).
The scheduling horizon is divided uniformly into a set L of L periods of length ∆. The
PARCPSP can be described by the following abstract model:

Minimize : Sn+1 − S0 (1)
s.t. : Sj − Si ≥ pi ∀(i, j) ∈ E (2)∑

i∈A
ri,k

di,`(Si)

∆
≤ bk ∀k ∈ R , ∀` ∈ L (3)

Where Si is the start date of activity i and di,`(t) is the length of the intersection
of the intervals [(` − 1)∆, `∆] and [t, t + pi]. The objective (1) is to minimize the project
duration (activities 0/n+1 are the dummy beginning/end of the project) under precedence
constraints (2) and periodically aggregated resource constraints (3): for every resource, in
every period, the capacity should not be exceeded on average.

1 Compact model

Two formulations based on mixed (continuous and discrete) time frameworks have been
proposed to model the PARCPSP. Although the computation of the values di,`(Si) can be
done by introducing only step binary variables (Morin et. al. 2017b), we focus here on an
alternative scheme based on period partitionning (Morin et. al. 2017a) that requires more
continuous variables, but involves less constraints, all big-M-free, thus yielding a better
linear relaxation.

Two additional functions are considered. Let λi,`(t) be the length of the intersection of
the intervals [(`− 1)∆, `∆] and (−∞, t]; let µi,`(t) be the length of the intersection of the
intervals [(`− 1)∆, `∆] and [t+ pi,+∞) (cf. Figure 1).

Notice that it is easier to describe λi,` and µi,` compared to di,`. Moreover, the intervals
whose lengths are measured by these functions form a partition of period `. Therefore:

λi,`(t) + di,`(t) + µi,`(t) = ∆ ∀i ∈ A , ∀` ∈ L , ∀t ∈ R (4)
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Fig. 1: Piecewise linear functions di,`, λi,` and µi,`

The values di,`(Si), λi,`(Si) and µi,`(Si) are represented as continuous variables Di,`,
Λi,` and Mi,`, respectively. To model the piecewise linear functions λi,` and µi,`, auxiliary
binary variables are introduced; more precisely, to ensure a non-increasing (resp. non-
decreasing) step behavior of the variables Λi,` (resp. Mi,`), step binary variables zλi,`
(resp. zµi,`) are required.

Minimize : Sn+1 − S0 (5)
s.t. : Sj − Si ≥ pi ∀(i, j) ∈ E (6)∑

i∈A
ri,kDi,` ≤ bk∆ ∀k ∈ R , ∀` ∈ L (7)

Si =
∑
`∈L

Λi,` ∀i ∈ A (8)

Di,` = ∆− Λi,` −Mi,` ∀i ∈ A , ∀` ∈ L (9)
Di,` ≥ 0 ∀i ∈ A , ∀` ∈ L (10)∑
`∈L

Di,` = pi ∀i ∈ A (11)

zλi,`+1 ≤
Λi,`
∆
≤ zλi,` ∀i ∈ A , ∀` ∈ L (12)

zµi,`−1 ≤
Mi,`

∆
≤ zµi,` ∀i ∈ A , ∀` ∈ L (13)

zλi,` ∈ {0, 1} ∀i ∈ A , ∀` ∈ L (14)

zµi,` ∈ {0, 1} ∀i ∈ A , ∀` ∈ L (15)

The objective (5) is to minimize the project duration, under both precedence constraints
(6) and periodically aggregated resource constraints (7). Constraints (8) enable the com-
putation of start dates Si directly from Λi,` variables, while constraints (9), derived from



the partition relation (4), enable the computation of Di,` values that cannot be negative
[constraints (10)]. Constraints (11) permit to balance the values of Λi,`λi and Mi,`µi

, where
`λi (resp. `µi ) is the period activity i starts (resp. completes) in. Finally, constraints (12)
[resp. (13)] enforce an interdependent non-increasing (resp. non-decreasing) step behavior
of variables Λi,` and zλi,` (resp. Mi,` and z

µ
i,`) using binary variables [constraints (14) and

(15)]. Therefore, every variable Λi,` (resp. Mi,`) with ` 6= `λi (resp. ` 6= `µi ) is bound either
to 0 or ∆, as shown in Figure 2.
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Fig. 2: Partition-based mixed time framework

2 Dantzig-Wolfe decomposition

We now introduce a new extended formulation that enhances and exploits the com-
binatorial structure of the PARCPSP. On the one hand, the (restricted) master problem
consists in selecting start dates t ∈ Ti for every activity i ∈ A (binary decision variables xi,t
such that Si =

∑
t∈Ti t xi,t, ∀i ∈ A) in such a way that all constraints are satisfied, while

minimizing the project duration. On the other hand, the sub-problem consists in finding
time points t to insert into sets Ti. Notice that, although the start date of an activity can
be any (real) time point in the (continuous) interval [0, L∆ − pi], only a finite number of
them need to be considered, since optimal solutions match extreme points of a polytope
described by a finite number of constraints.

2.1 Master problem

Minimize :
∑

t∈Tn+1

t xn+1,t −
∑
t∈T0

t x0,t (16)

αi :
∑
t∈Ti

xi,t = 1 ∀i ∈ A (17)

βi,j : −
∑
t∈Tj

t xj,t +
∑
t∈Ti

t xi,t ≤ −pi ∀(i, j) ∈ E (18)

γk,` :
∑
i∈A

∑
t∈Ti

ri,k di,`(t)xi,t ≤ bk∆ ∀k ∈ R , ∀` ∈ L (19)

xi,t ∈ {0, 1} ∀i ∈ A , ∀t ∈ Ti (20)



The objective (16) is to minimize the project duration, assigning a unique start date
to each activity [constraints (17)], under both precedence constraints (18) and periodically
aggregated resource constraints (19), using binary variables [constraints (20)].

Notice that dual variables βi,j and γk,` are non-negative. The linear relaxation of the
master problem is obtained by replacing constraints (20) with “xi,t ≥ 0”; notice that
constraints αi imply “xi,t ≤ 1”.

2.2 Sub-problem

Minimize : αi +
∑
j∈E⊕

i

βi,j t−
∑
j∈E	

i

βj,i t+
∑
k∈R

∑
`∈L

γk,` ri,k di,`(t) (21)

ESi ≤ t ≤ LSi (22)

Where, for each activity i ∈ A: E⊕i = {j ∈ A : (i, j) ∈ E} (set of direct successors of i),
E	i = {j ∈ A : (j, i) ∈ E} (set of direct predecessors of i), ESi and LSi are respectively
the earliest and latest starting time of i (those input values are typically obtained by
computing longest paths in the activity precedence graph).

Given an activity i ∈ A, the sub-problem returns a candidate start t within the horizon
[constraint (22)] such that the new variable xi,t has the least reduced cost [objective (21)].
This returned date t will be inserted in Ti in the restricted master problem only if needed,
i.e., if the reduced cost of xi,t is negative.

Notice that, after the partition relation (4), the reduced cost of xi,t can be transformed
into a sum of continuous monotonic piecewise linear functions of t. Therefore, the sub-
problem can be solved by a forward algorithm, linear in the number of breakpoints, hence
linear in the number of periods.

Computational experiments will be provided by time of the conference. Depending on
the results, it could be interesting to additionally separate either precedence or periodically
aggregated resource constraints. For instance, the framework proposed by Mingozzi et. al.
(1998) for the standard Resource-Constrained Project Scheduling Problem (RCPSP) could
be adapted to the case of the PARCPSP. The precedence constraints are managed by the
master problem, while the resource constraints are managed by the sub-problem. Instead of
using vector columns with binary components indicating whether an activity is processed
in a unit time period, these components should be replaced with real values in the interval
[0, ∆] indicating how much each activity is processed in a period of length ∆.
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1 Introduction

Scheduling project activities is a challenging decision-making process because such de-
cisions must cope with physical, technological and resource availability constraints. In the
classical resource-constrained project scheduling problem (RCPSP), the aim is to deter-
mine the start and finish times for all project activities within the specified precedence
relationship and resource constraints such that maximum completion time can be min-
imised. Möhring (1984) termed this problem as ‘problem of scarce resources’.

In practice, resource availability is often faced with conditions arising from the remote-
ness of project location, logistics cost of resource transportation, and costs associated with
hiring and releasing renewable resources (Sears et al., 2008). On the decision to release and
rehire renewable resources, this is practicable with some resources (e.g. unskilled labour)
and it is usually carried out to simultaneously meet daily manpower needs and eliminate
idleness (or waste). On the other hand, for resources which comes at a high hiring rate (or
are capital intensive) and are used from project start to finish not by a single activity but by
several activities, the decision to release becomes more complicated as it may not fit in with
activity resource requirements (Akpan, 1997; Vanhoucke, 2007; Odedairo, 2016). Therefore,
in a resource constrained project management environment; a replacement strategy should
be planned for resources that require uninterrupted usage and are jointly used by a group
of activities. This is necessary in order to forestall the following: (i) some skilled workers
(or machineries) released for another job may not return on time which can cause delay in
job processing, (ii) there is no guarantee that the same set of resources will be hired, and
(iii) the time to engage new resources might not be available. Hence, it becomes necessary
to decide on the minimum level of additional renewable resources to hire and hold (with all
costs implication) throughout a reasonable time period or for the entire project duration.
Also, while being held, the usage of a resource will differ in one or more time intervals due
to precedence constraints among project activities.

With this reality comes resource use-time and idle-time (and associated costs of usage
and idleness). The cost implications of resource usage and idleness times in this research is
assumed to have the same features as the time-dependent costs (TDC) introduced by Gong
(1997) and further elaborated and explained by Goto et al. (2000) and Vanhoucke (2006)
respectively. In this study, the objective is to characterise RCPSP within the context of
idleness cost (IC) arising from the use of additional hired resources (with TDC features)
held throughout the project makespan. Thereafter, a mathematical model that focuses on
the minimisation of the total schedule cost for the resource constrained project scheduling
problem with idleness cost (RCPSP-IC) will be developed to represent the essence of the
decision problem. The remainder of this paper is structured as follows. In section 2, related
work will be discussed. The mathematical models are presented in section 3 while in section
4, preliminary solution approach and results are discussed.



2 Related literature

Imreh and Noga (1999) investigated how scheduling problems change when machine
(resource) costs are considered. They argued that resource usage has associated cost, and if
the required resources are not available, then such can be procured or hired. Other studies
have been carried out on the impact of machine/resource cost on scheduling decisions
(Imreh, 2009; Ruiz-Torres et al., 2010). In their study, Ruiz-Torres et al. (2010) identified
two ways in which resource cost can be conceptualised and modeled as components of the
scheduling process. These are (i) using the duration of time required to process an activity
on a resource i.e. resource use-time and (ii) number of resources used.

As stated earlier, in projects; situations often arise when activity processing requires
uninterrupted availability and usage of specialised resources. Such a resource could be said
to be critical (or a bottleneck), in this context; a resource could be critical if it offers
specialised skills/services and its availability is constrained because it is capital intensive.
Furthermore, in their usage; inefficiencies such as resource idle-time may be encountered
due to predefined precedence constraints between activities in the project. In literature,
the problem of idle-time of resources due to processing of repetitive activities from unit to
unit and within-unit has been researched (Harris and Ioannou, 1998; Vanhoucke, 2007).

El-Rayes and Moselhi (1998) as cited by Vanhoucke (2013) define the term “work con-
tinuity constraints” as a way to schedule repetitive units of a project to enable timely
movement of resources from unit to unit to minimise total resource idle time. Vanhoucke
(2007) concluded that the minimisation of resource idle time for a work continuity optimi-
sation involves a trade-off between project completion and cost of idle time. Although, work
continuity constraints is widely known with repetitive projects; Vanhoucke (2007) opined
that in non-repetitive projects, uninterrupted usage of important resources e.g. specialized
consultants, etc. can also pose problem of idle time minimisation.

Therefore, for a RCPSP-IC; the decision on the number of additional resources to hire
and consequently hold to minimise total resource idle time should be considered during
project planning phase. To the best of our knowledge, there is no study available in which
the number of additional TDC resources in a RCPSP-IC is defined as a decision variable.

3 Problem abstraction and mathematical model

The RCPSP-IC can be stated as follows. Consider a set of activities, n, with index
j = 1, . . . , n numbered from a dummy start and end node of 0 and n + 1 respectively. Each
activity j has the following information: an activity is to be processed on X renewable
resources (with an index of m = 1, . . . , X); once started, the processing cannot be inter-
rupted. There is a finish-start precedence relationship with zero time-lag between activities
which enforces each activity to be scheduled after all its predecessors are completed. The
precedence relationship between activities is depicted by activity-on-node (AON) network.
For each activity, its processing time is independent of the schedule and can only be exe-
cuted in a single mode composed of a fixed duration and renewable resource requirements.

For renewable resources, each resource has the following characteristics: a resource
cannot process more than one activity at a time; a pre-specified unit of resource m = X
is available for every period of the project horizon. It is assumed that the project will
require additional hired renewable resources (K) with TDC features. Furthermore, the
additional resources are assumed identical, held from project start to finish with service
time equivalent to the project makespan. The identical nature of the TDC resources allows
for the possibility of parallel processing.



3.1 Relationship between Cost of Project Schedule and Number of TDC re-
sources

Since activity scheduling constitutes the core of cost minimisation in project manage-
ment, any strategic plan to minimise cost must be centred on determining a good schedule.
Therefore, for a resource, its time-dependent cost is equivalent to the product of cost of hir-
ing per time (hours, days and weeks) unit and its service (usage) time. For a TDC resource
hired and held throughout the project lead time, cost interpretations of such decision is
shown in Figure 1.

 

Fig. 1. Relationship between cost of project schedule and number of TDC resources.

In Figure 1, let Z1, be the cost attributable to project completion time, and Z2, the cost
attributable to SRIT (now termed resource idleness cost). Two scenarios are possible, the
first is the availability of one TDC resource, in this case, the sum of resource idleness time
(SRIT) will be minimum (zero) because the single resource is assumed to be continuously
busy; however, the project completion time (Cmax) will be maximum. The second scenario
involves multiple TDC resources; it is obvious that some or all the resources will be idle
during one or more time intervals of the project execution due to precedence constraints
between activities. In this case, project completion time is minimised while SRIT (k =
1, . . . , K) is assumed to be maximum.

Arising from the two scenarios, their cost implications can be depicted from Figure 1,
the total cost of project schedule (Z) is assumed to be a combination of two independent
components (Z1 and Z2). The relationship between the behaviour of Z1 and Z2 with respect
to available number of TDC resources (k = 1, . . . , K) can be further conceptualised to show
that, Z1 is a function Cmax and invariably a function of schedule (σ) and, for Z2, it is a
function of Cmax and k.

Therefore, for the RCPSP-IC, the minimum total schedule cost (Zmin) can be expressed
as shown in equations (1)–(3).

Z1 = f(Cmax) ≡ f(σ) (1)
Z2 = f(Cmax, k) ≡ f(σ, k) (2)

Zmin = f(σ) + f(σ, k) (3)

In equation (3), the minimum schedule cost for RCPSP-IC is a function of the schedule
and number of TDC resources.



3.2 Mathematical model of Resource Idleness Cost (RIC)

To model resource idleness cost (RIC), the schedule (σ) and number of TDC resources
(k) are defined as decision variables as described in equation (2). Before RIC model is pre-
sented, some notations used and their definitions will be explained. pj is activity processing
time (in days); the assignment variable yjk (1 = activity j is being processed on resource
k and 0 = otherwise); Cday is cost per time unit paid during each day of the project;
s = 1, . . . , S is index for schedule; t = 1, . . . , T is index for time periods; RSk

t(use−time) is
resource use-time for k; RSk

t(idle−time) is resource idle-time for k; Rk is per period avail-
ability of resource k; rjk is the resource unit required by activity j being processed by k
in each period; CRk is the cost of using TDC resource k per time unit (i.e. hiring cost per
day).

The cost associated with resource idleness time is presented in equation (4)–(8). As
explained, each TDC resource is expected to be held throughout the project makespan
(either used or idle); hence, each resource will have a duration equivalent to Cmax (in days)
as presented in equation (4). In equation (5), the idle time component of equation (4) is
obtained.

Cmax(σs) = RSk
t(use−time) + RSk

t(idle−time) (4)

RSk
t(idle−time) = Cmax(σs) − RSk

t(use−time) (5)

If activity j (j = 1, . . . , n) with processing time pj can be processed by TDC resource k,
then, RSk

t(use−time) for resource k is given by equation (6).

RSk
t(use−time) =

n∑
j=1

pjyjk (6)

Therefore for k = 1, . . . , K, the sum of resource idle time (SRIT) in days can be mathe-
matically expressed as shown in equation (7).

SRIT =
K∑

k=1

Cmax(σs) −
n∑

j=1
pjyjk

 (7)

From equation (7), RIC can be expressed as shown in equation (8).

RIC =

CRk

 K∑
k=1

Cmax(σs) −
n∑

j=1
pjyjk

 (8)

3.3 RCPSP-IC model

The total schedule cost for RCPSP-IC is described in equation (9). The first and second
components are the cost attributable to project completion time and to SRIT respectively.



TSC(σ,k) = Cmax(σs) · Cday +

CRk

 K∑
k=1

Cmax(σs) −
n∑

j=1
pjyjk

 (9)

subject to
FTi ≤ FTj − pj , j = 1, . . . , n, ∀i ∈ IP j , i → j (10)∑
j∈A(t)

rjk ≤ Rk, k = 1, . . . , K, t = 1, . . . , T (11)

Due to the usage of variable of the classical RCPSP (Pritsker et al., 1969), RCPSP-IC
is subjected to all of constraints already established in RCPSP. Two of these constraints
are described in equation (10)–(11). In equation (10), the precedence relations between
activities is enforced (where FT is finish time of activity; i for predecessor and j for
successor). Equation (11) ensure that resource consumption by each activity j = 1, . . . , n
does not exceed the limit per unit time.

4 Preliminary solution approach and results

A Serial Schedule Generation Scheme with latest finish time (LFT) as priority rule
was preliminary used to generate good schedules. The LFT priority is logically feasible
because an activity’s predecessor must have an earlier late finish time and so appears
earlier in the priority list. In addition, an idleness calculator (IDCalc) was incorporated
into the procedure which computes idle-time for the TDC resources at every time interval of
the project horizon. The computer implementation of the procedure was developed using
MATLAB. Data from a real-life project management situation were collected and the
associated problem solved as RCPSP-IC. For each TDC resource level k (k = 8 to 13), the
best schedule (σ) was obtained, keeping σ (σ = 1 to 6) constant, resource level was varied to
reflect levels of resource availability. Thirty-six (36) pairs of (σ, k) were formulated and for
each pair, Total Schedule Cost (TSC), Cost attributable to project completion time (Z1)
and Resource Idleness Cost (Z2) were calculated respectively. A conflicting relationship
exists between Z1 and Z2. Z1 decreased (increase) with increase (decrease) in resource
level. Z2 increased (decrease) with increase (decrease) in resource level. Hence, TSC for
RCPSP-IC was influenced by both the schedule and number of TDC resources.
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1 Abstract

In intermodal container transportation, where containers need to be transported be-
tween customers (shippers or receivers) and container terminals (rail or maritime) and
vice versa, transshipment of containers is commonly arranged at the terminals. Attracting
a higher share of freight traffic on rail requires freight handling in railway terminals that
is more efficient, and which includes technical innovations as well as the development of
suitable optimization approaches and decision-support systems. In this talk we will review
some optimization problems of container processing in railway yards, and analyze basic
decision problems and solution approaches for the two most important yard types: conven-
tional rail-road and modern rail-rail transshipment yards. Furthermore, we review some
of the relevant literature and identify open research challenges. Additionally we address
a container dispatching and conflict-free gantry crane routing problem that arises at a
storage container block in an automated, maritime container terminal. A container block
serves as an intermediate buffer for inbound and outbound containers and exchanges of
containers between water- and landside of a maritime terminal. The considered block is
perpendicular to the waterside and employs two rail mounted gantry cranes. Cranes may
have the same or different sizes and therefore either are based at the opposite sides of the
container block or can cross each other. The question arises in which order and by which
crane containers are transported in order to minimize the makespan and prevent crane
conflicts.
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1 Abstract

In today’s world, growing complexity demands that projects, in order to be successful,
have to satisfy not only stakeholder requirements, which refer to cost, time, and deliv-
ered quality, but also stakeholder expectations, which refer directly to the capability of
generating proper business value. Since business value can be measured only after project
completion, there is the need, during project life cycle, to handle value indicators: manage-
ment of proper Key Performance Indicators turns out to be a powerful Project Management
tool, which can be effectively used to increase the success rate of complex projects.

2 Stakeholder, who is this?

The word “stakeholder” dates back to the beginning of the eighteenth century, meaning
the person who was entrusted with the stakes of bettors, and, then, who was holding all the
bets placed on a game or a race, and, moreover who was paying the money to the winners:
therefore, the first stakeholder was a “holder of interests”. In addition, it is believed that
the first modern meaning of stakeholders, which has been attributed (Freeman, 1984) to
an internal memorandum of Stanford University Research Center dated 1963, was “those
groups without whose support the organization would cease to exist”, while in the first
text on the theory of stakeholders (Freeman, 1984), the definition of stakeholder was “a
stakeholder in an organization is any group or individual who can affect or is affected by
the achievement of the organization’s objectives”. Ten years later (Freeman, 1994), the
concept of generated value was added too, and stakeholders were defined as “participants
in the human process of joint value creation”. Furthermore, starting from the second half
of the eighties, the theory of stakeholder management, which was focused on corporate
social responsibility, incorporated an important ethical component into the concept of
stakeholder.

Definitively, a stakeholder, or an interested party, is a person, or a group of persons, or
an organization, that: has some kind of interest in the project; may affect the project, or
may be affected by the project; participates, or would like to participate, in the project;
can bring a value, which could be either positive or negative, to the project; may have
responsibilities towards the project, which, in turn, is supposed to satisfy stakeholders’
requirements and expectations.

Each project could then include a large variety of stakeholders, as, for example, project
manager, project team, sponsor, funders, partners or shareholders, customers, users, busi-
ness partners, suppliers, authorities, regulatory bodies, central and local public adminis-
tration, potential customers and users, participants and candidates to participate in the



project, local communities, web communities, associations, trade unions, media, competi-
tors, and so forth.

3 The stakeholder perspective and the value of project stakeholder relations

All the project stakeholders are important, since all the stakeholders are central towards
each project (Pirozzi, 2017): the stakeholders are both the actors, and the beneficiaries,
of the project, and the stakeholders are the critical success factor of the project, since
they are both the realizers of the results, and the validators, at various levels, of their
satisfaction in terms of needs and expectations. In fact, stakeholders, including the project
manager and the project team, are the doers of the project, as well as stakeholders, in-
cluding customers, users, and funders, are the target groups of the project itself: business
is the domain in which various stakeholders (project manager, project team, project man-
agement office, sponsor, board, shareholders, customers, users, suppliers, investors, central
and local public administration, groups of opinion, local communities, and so forth) inter-
act to create and exchange value. The relationships between the project stakeholders are,
then, real and proper business relationships, which are associated with the generation, and
the exchange, of both material and immaterial value: in general, this flow of value, among
the stakeholders, courses through the project with a continuous exchange of resources and
results.

In fact, organizations define strategies, which are based on their own mission and vision,
then select opportunities in accordance with defined strategy, then set business cases up,
and, finally, start projects up. The inputs of a project, and, specifically, to the project
management initiating process group, include business case, contract, and Statement of
Work (The International Organization for Standardization, 2012): generally, of course,
there are different business cases for different stakeholders, as, for instance, providers and
customers are. While business cases, which are the causes of project start-up, are based
on stakeholder business expectations, whose satisfaction correspond to the achievement
of project goals, contract and SOW, which are the references for project development
and delivery, are based on stakeholder requirements, which are, in turn, the conversion of
different stakeholder expectations in a commonly agreed (at least initially) project scope,
and whose fulfilment correspond to the achievement of project objectives.

A project can be considered really successful when its goals are realized, then achieving
those results that correspond to the stakeholder expectations, and which are characterized
by a satisfactory perceived quality; on the other hand, in order to realize the expecta-
tions of stakeholders (project goals), each project must necessarily achieve its objectives,
by realizing those deliverables that fulfill stakeholder requirements, and which are char-
acterized by a proper delivered quality. Effective Stakeholder Management should target
the satisfaction of both stakeholder requirements and expectations, which corresponds to
the achievement of both project goals and objectives (Figure 1): stakeholder satisfaction,
instead of being “a” critical success factor, proves to be “the” critical success factor; in
fact, projects may not succeed their goals, or may fail at all, for various reasons, which
could be technically very different, but, for sure, each project that was not successful had
at least one key stakeholder whose expectations were not satisfied.

In Stakeholder Management, then, effective management of both the domain of “deliv-
erable”, which is based on delivered contents, and of the domain of “perceivable”, which is
based on relations, becomes essential: the realization of the expectations of the stakehold-
ers, which, of course, implies also their acceptance of the deliverables, is therefore a primary
goal of the project, and it coincides with the most important critical success factor (Pirozzi,
2017). In any case, the stakeholder relations are the core of the project value, since they



 

Fig. 1. The Stakeholder Perspective (Pirozzi, 2017).

are a value, which is fundamental to the existence of the project and to its definition, but
also since they generate value, which is incorporated in the project, and because they allow
the exchange of value, through the project results, among the stakeholders themselves: the
results of a project are, in fact, the results of the relations among its stakeholders. Stake-
holder perspective, ultimately, supports and determines project success: «The emphasis on
Relationship Management is of special importance in today’s world» (Archibald, 2017).

4 Achieving the planned business value: the success factor in complex projects

PMI’s 2017 Global Project Management Survey (Project Management Institute, 2017)
reported that more of 30% of the projects do not meet their original goals and business
intent, i.e. they do not satisfy stakeholder expectations: therefore, the attention to the
satisfaction of stakeholder expectations must be considered as a critical factor, rather than
as a simple warning. In today’s Project Management, Stakeholder Management becomes,
then, the crucial process group, since it targets effectively the project success, by supporting
the generation of that project value which could satisfy both stakeholder requirements and
stakeholder expectations: if we use the perspective of project success, we can distinguish
two cases, the “classical” projects, and the “complex” projects.

In “classical” projects: project is part of customer core business (as, e.g., in internal
or in outsourcing projects), and/or project deliverables are product oriented, and/or are
tangible (as, e.g., in infrastructure projects), and/or, in any case stakeholder requirements
are either well defined (traditional contexts) or are evolutive, but all stakeholders cooperate
effectively (agile contexts); triple constraints (time, cost, quality) are dominant; relations
with stakeholders are important, and periodical. In classical projects, success is based on
the satisfaction of stakeholder requirements: in fact, there is just a small gap between the
satisfaction of requirements and the satisfaction of expectations, and, then, the measures
of the value could be limited to the measures of costs and of consistency/state of progress
of the deliverables, as usually happens in traditional/agile Project Management.

On the other hand, in “complex” projects: project is a support of customer core business
(as, e.g., in the majority of external projects), and/or project deliverables are oriented to
services, and/or are intangible (as, e.g., in software projects), and/or, in any case, stake-
holder requirements are either not well defined or are evolutive, but not all stakeholders
cooperate effectively; competing constraints are dominant, so that value and reputation
overcome triple constraints (Kerzner, 2015); relations with stakeholders are primary, and
can be continuous, fast, interactive (2.0), evolutionary (Kerzner, 2015). In complex projects,



success is based on the satisfaction of stakeholder expectations (Figure 1): since there is
a significant gap between the satisfaction of requirements and the satisfaction of expecta-
tions, the measures of the value must include the measure of business value, too. Defini-
tively, in each complex context, «Success is not necessarily achieved by completing the
project within the triple constraint. Success is when the planned business value is achieved
within the imposed constraints and assumptions.» (Kerzner and Saladis, 2009).

5 Managing effectively business value by use of Key Performance Indicators

Value management requires measures: during project life cycle, the measure of actual
cost and the assessment of the state of progress of the deliverables are commonly used as
indicators to estimate time and cost of the project completion, while the measures of the
generated business value, which is “future” with respect to project life cycle, could be done,
unfortunately, only after project completion. Therefore, since, during project life cycle, the
measures of business value are not possible, there is the need of the support of indicators,
which could be used to estimate both the current situation and the possible evolution of
the business value: proper Key Performance Indicators (KPIs) are then required. In each
complex project, an effective Stakeholder Management is thus based on measuring, mon-
itoring, and sharing, value-driven specific Key Performance Indicators: KPIs have to be
S.M.A.R.T (Specific, Measurable, Attainable, Realistic, Time Related), but also few, rel-
evant, actionable, and predictive, and can be shared continuously, quickly, and effectively
with stakeholders through dashboards, which can often replace efficiently traditional re-
ports (Kerzner, 2015). Moreover, the use of dashboards can be effective also in several cases
of reluctant, indifferent, and negative/hostile, stakeholders, because dashboards generally
ask only for answers yes/no, and no-answers can be interpreted positively, too.

Since stakeholders are different, they have different behaviour, and they target different
values: while “providers” (Project Manager, project team, etc.) target technical (delivered)
values, which are typical of Project Management, as triple constraints, project objectives,
and revenues, “investors” (top management, funders etc.) target economic values, as costs,
revenues, and business prospects, and “purchasers” (customers, users etc.) target business
values, as customer costs (that correspond to providers/investors revenues), project goals,
and benefits achievement. Therefore, effective KPIs have to target different types of value,
which refer to both Project Management, economic, and business domains. Examples of
Project Management KPIs include Earned Value, Cost Performance Index, Schedule Per-
formance Index, percentages of completed work packages compared to those which have
been planned, percentages of critical work packages which are aligned to the budget and/or
to the schedule, numbers and percentages relating to resources, risks, revisions, to requests
for change and changes etc.; examples of economic KPIs include economic, financial, mar-
keting, CRM, operational, HR, and sustainability indicators; examples of business value
indicators include specific functional and/or quantitative measures, and relevant percent-
ages of completion and/or of deviation from budget and/or schedule, but also measures
and percentages of stakeholder satisfaction (in terms of both requirements and expecta-
tions), measures and percentages of stakeholder engagement, and, definitively, measures
of perceived value (e.g. business value, social value, quality, reputation, business climate,
innovation, sustainability). In any case, while, in value-driven projects, the use, and the
sharing, of Project Management KPIs, of economic KPIs, and, only if they are considered
precisely measurable, of customer satisfaction KPIs too, can be considered well present in
the literature (Kerzner, 2017), in both value driven and complex projects the use, and the
sharing, of the above mentioned “new” KPIs which are relevant to the perceived value, can
be considered innovative. Furthermore, specific KPIs that are relevant to different busi-



ness sectors (e.g., referring to some cases that will be shown in the presentation at the
conference, local public transportation, pharmaceutical industry, railway infrastructure,
sustainable smart cities, web marketing, etc.), could be effectively used, as trend indica-
tors, also in project management during project life cycle, and not only as performance
indicators after project completion.

In Project Management, definitively, any measurable value can be effectively used as
a KPI, and the use of an appropriate selection of KPIs is a powerful tool to target the
success of the complex projects, by supporting both the value generation, and the project
goals achievement.

6 Conclusions

Stakeholders, who are central towards both projects and Project Management, define
success in terms of generation of their own business value: proper value indicators (KPIs)
in the domains of project management, of economics, and of business value, can be, then,
measured, shared with stakeholders, and used, in order to effectively confirm/redirect the
action of the project team during life cycle of the complex projects. Stakeholder Perspec-
tive, in this way, allows targeting both project objectives and project goals, then supporting
both the realisation of deliverables and the accomplishment of value generation, so as to
achieve the overall result of a significant increase of the project success rate. During the
presentation at the conference, a case study will be illustrated, in order to show both the
possibility of having unsuccessful projects, in which objectives can be reached, but stake-
holders expectations are not satisfied, and how the different Key Performance Indicators
could be managed, in particular if a conflict among some of them occurs.
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1 Introduction

This paper addresses the weekly scheduling of the activities within one of the research
facilities of the French Alternative Energies and Atomic Energy Commission (CEA in short
for French). After analyzing the operations and characteristics of the studied laboratory,
we conclude that the problem under consideration amounts to an extension of the classical
Resource-Constrained Project Scheduling Problem (RCPSP).

The RCPSP is a combinatorial optimization problem that covers a wide range of
scheduling situations. The problem consists in scheduling non-preemptive tasks on lim-
ited renewable resources. These tasks are linked together by precedence relationships (task
i cannot start while task l is in process, ∀(l, i) ∈ E). Usually, the objective is to �nd a
solution that minimizes the makespan of the project, while complying both the precedence
constraints and the resource constraints.

Even if the standard version of the RCPSP allows the modeling of a broad spectrum
of scheduling problems, it may not cover all the situations that can be found in real-life
problems. Extended versions of the RCPSP are then necessary. For a more exhaustive
lecture about the variants and extensions of the resource-constrained project scheduling
problem, we refer to the survey on this topic published by Orji and Wei (2013). Among all
the existing extended versions, we distinguish two that are of great interest for the modeling
of the studied problem: the Preemptive RCPSP and the Multi-Skill Project Scheduling
Problem (MSPSP). A �rst attempt to combine these two models for scheduling research
activities can be found in Polo Mejia et al. (2017), where a pure preemptive MSPSP with
multi-skilled resources is proposed. However, an intensive analysis of the laboratory under
study highlighted the need to develop a more extended version in order to have a better
representation of the reality. That is why we propose in this paper a new extended variant
of the RCPSP: MSPSP with partial preemption.

The remainder of the paper is as follows. In the next section, we brie�y describe the
problem under consideration. In Section 3, we present the mixed integer linear programming
model representing the partially preemptive MSPSP and some computational experiments
carried out. Finally, in the last section, we conclude and discuss future research.

2 Problem description

The classical version of the RCPSP is supposed to be non-preemptive, that means,
once started an activity must run continuously until its completeness. However, in some
practical applications as in the case of scheduling research or engineering activities, it
may be interesting to allow the preemption. Allowing preemption may lead to a reduced
makespan of the project, especially when resource availability is very limited. On the other



hand, it increases the number of possible solutions and consequently the computational
complexity of the problem (Herroelen et al. 1998).

Traditionally in the preemptive RCPSP, the preemption is allowed for all the activities.
However, due to some safety and operational constraints, proper to nuclear regulation, we
must forbid the preemption of a subset of activities. Another hypothesis of this variant
is the release of all resources during the preemption periods. When scheduling research
activities, we may be interested in avoiding the release of some equipment or resource
having an important setup time for some activities. That is why we propose to work with
a variant allowing the partial release of resources according to the characteristics of the
activities. We must indicate for each activity what resource can be released during the
preemption periods.

Other assumption of the RCPSP is that each resource has speci�c functions, or in
other words the resources are supposed mono-skilled. This hypothesis can become false
when we are also studying the allocation of human resources working in the project. In
our study case, some resources could perform several functions leading us to a multi-skill
RCPSP (MSPSP). In the MSPSP, a resource is therefore characterized by the set of skills
it possesses; and a task is no longer only de�ned by the quantities required of each resource,
but also by the number of resources with a speci�c competence. This variant acquires great
importance for scheduling activities in very speci�c �elds, such as pharmaceutical, chemical
and nuclear, where the regulation requires the presence of a group of technicians having a
set of well-de�ned competences for the execution of an activity.

In the MSPSP, as de�ned by Montoya et al. (2014), technicians can only respond to
one skill requirement per activity. However, in our practical case, technicians may respond
to more than one skill requirement per activity. Additionally, due to operational and safety
reasons, we need to guarantee a minimal number of technicians present during the execution
of the activity.

Keeping in mind all the aforementioned characteristics, and looking for the most re-
alistic model, we decided to develop an extended variant of RCPSP combining the char-
acteristics of the MSPSP and the preemptive RCPSP. In the proposed variant, that we
called MSPSP with partial preemption, the objective is to �nd the best schedule for a
set of activities on renewable multi-skilled resources with limited capacity, being able to
respond to more than one skill requirement per activity. An activity is now de�ned by its
duration, precedence relationships and constant requirements of both resources and skills.
Preemption is now handled in three levels according to the activities characteristics: 1)
Non-preemption, for activities where none of the resources can be preempted; 2) Partial
preemption, for activities where a subset of resources can be preempted; and 3) Full pre-
emption, for activities where all resources can be preempted. In our practical case, activities
may be subject to a release date and to a deadline (activities in the subset B) or due date
(this is determined by the importance of the activity). Additionally, due to the durations
of some activities (larger than technicians' work shifts), we need to relax the constraint
stating that the same technician execute the totality of the activity.

For establishing the complexity of the MSPSP with partial preemption, we use as a
starting point the classical RCPSP. For each instance of the RCPSP we can match an
instance of the MSPSP with partial preemption, where all resources are mono-skilled and
none of the resources can be preempted. So, we can see the RCPSP as a particular case of
the MSPSP with partial preemption. The RCPSP has been proved to be strongly NP-hard
(Blazewicz et al. 1983); we can therefore infer that the MSPSP with partial preemption is
also strongly NP-hard. Once de�ned the characteristics and the complexity of the proposed
problem, we proceed to formalize the problem using a mixed integer linear programming
model that we discuss in the next section.



3 Modeling

The RCPSP can be modeled using di�erent approaches: continuous time-based models
based on �ows, discrete-time mixed integer linear programming (MILP) formulations, or
event-based MILP formulations. Among the discrete-time formulations, more precisely the
time-indexed formulations, we �nd the so-called on/o� formulation. This formulation uses
binary variables Yi,t, where Yi,t = 1 if activity i is in progress at time t and Yi,t = 0
otherwise. This formulation, which seems to be the most suitable for the preemptive case,
has been the basic formulation for the construction of tested models.

In order to choose an e�ective model, we tested two models, that are similar in essence,
constructed using the on/o� formulation. In both models, most restrictions are modeled
in the same way. The main di�erence lies in the way in which we handle the preemption
periods. For testing these models, we generated a set of instances inspired by real data
using the method proposed in Polo Mejia et al. (2017). After computational experiments,
one of the models showed signi�cantly better results, and it is presented below.

In the model DOj,t is the operator's availability over the time. Bri,k represents the
resource requirements. DRk,t indicates the resource capacities. Parameter PRi,k indicates
whether the resource k can be preempted (PRi,k=0) or not (PRi,k=1). Skill requirements
are given in parameter Bci,c. COj,c indicates the set of skills of technicians (COj,c =
1 if technician j has the competence c, 0 otherwise). Parameter Pci indicates whether
technicians can be preempted (Pci=0) or not (Pci=1). The minimal number of required
technicians is given in Nti. Di represents the duration of activities. Parameters dli and ri
are the deadlines and release dates.

� Yi,t ∈ {0, 1}, Yi,t = 1 ⇐⇒ activity i is in progress at time t
� Oj,i,t ∈ {0, 1}, Oj,i,t = 1 ⇐⇒ technician j is allocated to activity i at time t
� Zi,t ∈ {0, 1}, Zi,t = 1 ⇐⇒ activity i starts at time t or before
� Wi,t ∈ {0, 1}, Wi,t = 1 ⇐⇒ activity i ends at time t or after
� Ppi,t ∈ {0, 1}, Ppi,t = 1 ⇐⇒ activity i is preempted at time t
� Tardi ∈ Z≥0 : Tardiness of activity i

min
∑

i Tardi +
∑

i

∑
t t ∗ Yi,t (1)

s.t.
∑

i Oj,i,t ≤ DOj,t ∀j,∀t (2)∑
i((Yi,t + PRi,k ∗ Ppi,k) ∗Bri,k) ≤ DRk,t ∀t,∀k (3)

(Yi,t + Pci ∗ Ppi,t) ∗Bci,c ≤
∑

j(Oj,i,t ∗ COj,c) ∀i,∀t,∀c (4)∑
j Oj,i,t ≥ (Yi,t + Pci ∗ Ppi,t) ∗Nti ∀t,∀i (5)∑

t Yi,t ≥ Di ∀i (6)

Dl ∗ (1− Yi,t) ≥
∑T

t′=t Yl,t′ ∀(l, i) ∈ E,∀t (7)∑T
t=dli+1 Yi,t ≤ 0 ∀i ∈ B (8)∑ri−1
t=1 Yi,t ≤ 0 ∀i (9)

Ppi,t ≥ Zi,t +Wi,t − Yi,t − 1 ∀i,∀t (10)

Zi,t ≥ Yi,t′ ∀i,∀t,∀t′ ≤ t (11)

Wi,t ≥ Yi,t′ ∀i,∀t,∀t′ ≥ t (12)

Zi,t ≤
∑t

t′=1 Yi,t′ ∀i,∀t (13)

Wi,t ≤
∑T

t′=t Yi,t′ ∀i,∀t (14)

Tardi ≥ t ∗ Yi,t − dli ∀i,∀t (15)



The objective in (1) represents the minimization of the tardiness and also ensures the
scheduling of units of duration of each activity as soon as possible. Equations (2) ensure that
operator's capacities are satis�ed. In equations (3), we ensure that all resource requirements
are satis�ed respecting the resource capacities. Equations (4) ensure the respect of skill
requirements taking into account the set of skills of technicians. The constraints given in (5)
and (6) ensure the respect of the minimal number of technicians and duration of activities.
Precedence constraints are given in (7). Inequalities (8) and (9) are the constraints for
deadlines and release dates. Equations (10) determine whether an activity is preempted
or not. Inequalities (11) to (14) are constraints for getting the values of variables Zi,t and
Wi,t. Finally, inequalities (15) calculate the tardiness.

Using CPLEX, this model allows us to solve optimally a set of small instances (20 activ-
ities with duration between 1 and 10 units of time and a mean of 4 precedence relationships,
13 skills) within a mean time of 7.23 seconds. For a set of larger instances (20 activities
with duration between 5 and 20 units of time and a mean of 6 precedence relationships,
13 skills), we were not able to solve them optimally after 2 hours of computing having
�nal gap between 3-15%. By conference time, heuristic methods capable of obtaining good
answers in reduced times for large instances will be presented.

4 Conclusions

In this paper we show how operations research techniques can be applied to schedule
research activities within a nuclear facility. Reducing the scheduling horizon allows us to
manage the inherent variability of research activities and hence to treat the scheduling
problem as a traditional one. The application of operations research techniques to the
scheduling process of research activities can reduce the time spent by researchers in the
planning of activities, giving them more time to devote to research. Additionally, using
these techniques in the nuclear �eld increase the safety on the facility by ensuring the
respect of all technical constraints.

The RCPSP has been shown to be a very powerful model, being able to represent a
huge amount of real-life problems. However, for some complex systems, the classical RCPSP
may not take into consideration some very important aspects. We then proposed in this
paper the multi-skill project scheduling problem with partial preemption and an MILP
formulation for formalizing the problem.

As future work, we must study ways to improve the proposed model in terms of the
quality of the linear relaxation and time solving. We also need to develop new heuristics
allowing us to have good solutions in reasonable times. In order to develop algorithms for
exact solving, approaches for calculating good lower bounds will be studied.
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1 Introduction

In several important real world applications we find the problem of scheduling the
movement of objects on a network under spatial constraints on their relative position.
Vehicles moving on a transportation network need to fulfil spatial constraints that prevents
them from colliding, or getting too close to each other. Typically, the movement of a vehicle
in a network is represented as a sequence of atomic movements (the route), each requiring
a certain time and corresponding to the occupation of a specific network resource. For
instance, in railway networks a resource correspond to a track segment, for aircraft a
resource can be either an airborne sector or an airport segment, for boats may be channels
regions etc. In this framework, the standard way of modelling spatial conflicts is to sequence
vehicles on shared resources (by satisfying suitable disjunctive constraints). Examples of
this approach in different contexts are in (Mascis and Pacciarelli 2002) for trains, (Boccia
et. al. 2018) for airplanes, (Günther et. al. 2010) for ships, etc. However, in many cases this
approach can be insufficient, both because the vehicles and the network resources may have
complicated spatial shapes - giving rise to conflicts in non-shared resources, and because
two vehicle actually can be on the same network resource if they are not too close to each
other.

a

b

cd

Fig. 1: Vehicles moving on a network with potential conflicts.

This work is motivated by an application in air traffic management, namely that of
finding a conflict free trajectory solution for taxiing aircraft at an airport. Simply put, for
each allocation of taxi routes to aircraft, the task is to determine a temporal movement of
each aircraft along it route so that no aircraft collides.

In this work we present a mathematical construction, so called "Conflict Diagrams",
and demonstrate how this concept is a powerful mechanism for presenting spatial conflicts
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between two objects moving on a spatial graph. We discuss the conflict diagram’s properties
and show how they can be constructed and extended following simple rules. We then discuss
how the conflict diagram relates to timing variables associated with each vehicle,and how
conflict diagrams can be used to construct feasible schedules.

2 Conflict diagrams

We are considering movements of vehicles on a spatial graph, where each arc corresponds
to some curve in space (IRn

+ with n = 1, 2, 3). For instance, arcs may represent road
segments, rail tracks, airborne sectors, etc. The route of a vehicle is an ordered sequence
of arcs, with the tail of an arc starting at the head of the previous arc. Consider a pair
of vehicles vx and vy with given routes Rx and Ry of length Lx and Ly, respectively. We
can describe the movement of vehicle vx and vehicle vy along their routes as real function
x = x(t) and y = y(t), respectively, with x(t) : IR+ → [0, Lx], and y(t) : IR+ → [0, Ly],
denoting the position in the route as a distance from the origin at time t. Also, we assume
that both x(t) and y(t) are piece-wise linear functions.

t

x

t

y

x

y

x(t)
y(t)

f(x,y)

Lx
Ly Ly

Lx

Fig. 2: Two trajectories and concurrent trajectory

If we now eliminate parameter t, we obtain a function f(x, y) = 0 (the concurrent tra-
jectory) which describes the concurrent positions of the two vehicles along their respective
routes. Namely, f(x̄, ȳ) = 0 if and only if there is a time t̄ ≥ 0, such that x̄ = x(t̄) and
ȳ = y(t̄). Observe that the curve is defined only in the box BL = {(x, y) ∈ IR2 : 0 ≤ x ≤
Lx, 0,≤ y ≤ Ly} and that both point (0, 0) and point (Lx, Ly) belong to the curve (and
we call them first and last point).

Now, let (x̄, ȳ) ∈ BL represents a point where the two vehicles are too close to each
other. That is, there is some spatial constraint that says that vehicle vx and vehicle vy
cannot be at these respective positions along their routes at the same time. Such point
(x̄, ȳ) cannot belong to any (feasible) concurrent trajectory f(x, y). We call one such point
a conflict point. We denote by C the set (of the unit box) of conflicting points. To simplify
the discussion, from now on we assume C to be the region delimited by a polygon (see
Figure 3). So, a concurrent trajectory f(x, y) = 0 is infeasible (or ’conflicted’) if it intersects
the conflict region C. In Figure 3), f1 is infeasible, whereas f2 is feasible.

The conflict region C must be constructed from a geometrical analysis of the move-
ment of the two vehicles along their respective routes, resulting in the conflict regions C
(illustrated as the dark grey region in Fig. 3).

By exploiting specific knowledge on how vehicles actually move, the conflict region C can
be extended to the infeasible region C̄, namely a set of points which cannot be intersected
by any concurrent trajectory. For instance, we may assume that airplanes can only move
forward in their trajectories. Points in BL which would necessary lead the vehicles to a



point in C have to be prevented, even if strictly speaking they are not conflict points.
Similarly, points in BL \C which cannot be reached without crossing C can be neglected.

For forward trajectories, We have the following

Lemma 2.1 Suppose vehicles can only move forward in their route, and let (x∗, y∗) ∈ BL.
If there exist non-negative quantities δx ≥ 0 and δy ≥ 0 such that both (x∗ + δx, y

∗) ∈ C
and (x∗, y∗ + δy) ∈ C, then (x∗, y∗) is infeasible.

Similarly, if there exist non-positive quantities δx ≤ 0 and δy ≤ 0 such that both (x∗ +
δx, y

∗) ∈ C and (x∗, y∗ + δy) ∈ C, then (x∗, y∗) is infeasible.

The region C̄ ⊆ C which contains C and all the additional infeasible points associated
with C is called the infeasible region and one can show an effective polynomial algorithm
which builds C̄ from C. If C is the region delimited by a polygon, so is C̄.

Fig. 3: A conflict diagram showing the conflict region and its infeasible region.

Observe that the infeasible region C̄ has always a first vertex (the leftest) and a last
vertex (the one most to the right). All other vertices can be classified into lower vertices
(having now infeasible points below) and left vertices (having no infeasible point to the
left).

3 Feasible concurrent trajectories

Lemma 3.1 We can partition the family of feasible concurrent trajectories into two classes

1. vy − wins: Any point on the trajectory lies above any infeasible point with same x-
coordinate.

2. vx − wins: Any point on the trajectory lies below any infeasible point with same x-
coordinate.

In Figure 3, f2 is an x − wins trajectory. We now focus on vx − win trajectories.
A symmetric result applies to the other case. To simplify the notation, we assume that
f(x, y) = 0 in BL is the set of points satisfying y = g(x), for x ∈ Lx. One can show the
following important result



Lemma 3.2 vx wins if, for every vertex (x̄, ȳ) of C̄, the point (x̄, g(x̄)) lies in the area
below C and, for any two adjacent lower vertices (x̄1, ȳ1), (x̄2, ȳ2), f(x, y) is linear between
points (x̄1, g(x̄1)) and(x̄1, g(x̄2)).

Let x̄ = x(t̄x), i.e. t̄x = tx(x̄) is the time when x reaches x̄ on its route. Similarly, let
ȳ = y(t̄y), with t̄y = ty(ȳ). Then the above Lemma is equivalent to the following

Lemma 3.3 vx wins if, for every vertex (x̄, ȳ) of C, we have tx(x̄) ≤ ty(ȳ) and f(x, y) is
linear between points associated with successive low vertices as in Lemma 3.2.

4 Scheduling without conflicts.

Consider a vehicle vx, with piecewise linear trajectory x = x(t), and letX = (x1, . . . , xk =
Lx) be the ordered set of breakpoints. A schedule for vx is a vector tx ∈ IRX

+ , where txi
specifies when vx is at point xi. The schedule must satisfy time precedence constraints
associated with the breakpoints, i.e. txi+1− txi

≥ λi,i+1, where λi,i+1 is the minimum time
necessary to vx to run from xi to xi+1. Precedence constraints may involve also variables
associated with different vehicles, for instance tyk

− txj
≥ λxjyk

. Now, consider a second
vehicle vy, its trajectory y = y(t) and list of breakpoints Y = (y1, . . . , yq = Ly). Suppose
we are given for the pair of vehicles vx, vy a conflict diagram C and its infeasible region
C̄. Also, assume vx wins. We assume that the break points X contain also the set of x
coordinates of the lower vertices of C̄, plus the x coordinates of the first and last vertex in
C̄, namely xf and xl. Denote by X̄ the ordered subsets of X between xf and xl (included).
Let Ȳ = {y ∈ [0, Ly] : y = g(x̄), x̄ ∈ X̄}. We now assume that Y ⊇ Ȳ .

Lemma 4.1 Let XY = {(x̄, ȳ) ∈ X̄ × Ȳ : ȳ = g(x̄)}. If tx̄ ≤ tȳ for all (x̄, ȳ) ∈ X̄Y , then
f(x, y) is feasible.

In this extended abstract we are not focussing on the actual decisions of who wins, which
requires the definition of a suitable disjunctive program (Mascis and Pacciarelli 2002).

We are currently implementing a system to schedule and route airplanes in an airport.
The solution algorithm is based on the solution of large disjunctive programs, and makes
use of conflict diagrams to represent and identify conflicts, and to associate suitable timing
variables with trajectories. Indeed, the standard shared-resource conflict model would not
suffice to represent the different conflicting situation that may occur. The system will be
tested in April in an official test campaign (sponsored by the EU joint undertaking SESAR
2020). The test case will be Budapest airport (a medium size airport). The test campaign
will last for two weeks, involving several airport ground traffic controllers, and will be
carried out with the support of EUROCONTROL’s simulation platform.
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1 Introduction

The nature of scheduling problems where execution time of a job is not set a priori
and depends on the amount of allocated doubly-constrained resource has its characteristic
specificity. Although the length of the optimal schedule depends in this case both on the
available temporary amount of the doubly-constrained resource and its total amount, in
practice for a specific instance of the problem, both of these restrictions are rarely ac-
tive. This fact can be used in the methodology to solve such problems. In this work, we
will demonstrate this approach on the example of a doubly-constrained resource with a
continuous nature, exemplified by power/energy. We will use the well-known model of a
job (Wȩglarz, 1981), in which its speed of execution depends on the temporary amount of
power allocated to it. We consider the problem of scheduling independent preemptable jobs
with the criterion of minimizing the makespan. The general methodology for solving such
problems is known and has been presented in many papers (Józefowska and Wȩglarz, 1998,
Różycki and Wȩglarz, 2014, Różycki and Wȩglarz, 2015). It involves solving a non-linear
mathematical programming problem. Unfortunately, the practice shows that solving such
problems with known numerical methods is extremely difficult. Below, we present an ap-
proach that in some situations allows to find the optimal solution with less computational
effort.

2 Problem formulation

Let there be given a set of n independent, preemptable jobs and a set of m parallel
identical machines. A job requires a certain amount of continuous doubly-constrained re-
source (power/energy) and a machine to be performed. The power usage of all jobs must
not exceed the limit P at the moment. The consumption of energy by all jobs is limited by
the amount E. The temporary speed of job i depends on the current allocation of power
pi(t) and is described by a continuous increasing function (processing speed function), si,
si(0) = 0. Before assigning the power to a jobs, its execution time is unknown. Instead
of that, job i is characterized by size wi. The problem is to find an assignment of jobs to
machines, and simultaneously an allocation of power to jobs which lead to the schedule of
minimal length. In the further part of the paper we will limit our considerations to concave
processing speed functions, for which the considered problem is non-trivial.

3 General methodology

The general methodology of solving the problem is based on the theorem (known from
e.g. Wȩglarz, 1981), which assumes that the execution of jobs is only limited by power and
energy (there is no limit due to the available number of machines). This theorem defines



an allocation of power to jobs, which leads to a schedule of the shortest length. It can be
shown that for the considered concave processing speed functions, it is desirable to perform
the jobs (if possible) in parallel. Optimal constant power allocation pi, i = 1, 2, . . . , n, for
jobs executed in parallel, may be calculated basing on the optimal length of their schedule
T ∗, found as a solution of one of the two nonlinear equations:

T
n∑

i=1
s−1

i (wi/T ) = E (1)

n∑
i=1

s−1
i (wi/T ) = P. (2)

The first equation allows to calculate T ∗ from the constraint on energy, the second
from the power limit. Of course, in most cases only one of these restrictions is active.
Unfortunately, it is often difficult to evaluate a priori which one. Therefore, it is justified
to utilize a rule where the easier equation is solved first and then it is checked whether
the calculated power allocation does not violate the second limitation. If the second limit
is violated, it means that for the given instance it is active and the optimal length of the
schedule should be calculated from the second equation. In many practical cases, e.g. for
processing speed functions of form:

si(pi) = p
1/αi

i , αi ∈ {2, 3, 4}, i = 1, 2, . . . , n. (3)

Equations (1) and (2) can be solved analytically since they are algebraic equations of an
order not greater than 4. However, equation (1) is of an order less by 1, and thus should
be solved first.

The above approach can be used in the general situation, where, due to the limited
number of machines, all jobs must not be performed in parallel. A potentially optimal
schedule (see Figure 1) of preemptable jobs can be represented by the sequence of r, r =(

n
m

)
, m - element combinations. A single combination Zk, k = 1, 2, . . . , m, represents the

m jobs performed in parallel in a given part of the schedule. Let us denote by wik the part
of size wi of job i performed in k-th part of a schedule (represented by Zk) and by Ek the
portion of energy allocated to Zk. Set Ki contains the indices of combinations where job
i belongs to. In order to find the optimal schedule, the following nonlinear mathematical
problem has to be solved in the general case:

NLP1: minimize T =
r∑

k=1

T ∗
k ({wik}i∈Zk

, Ek, P ) (4)

subject to
r∑

k=1

Ek ≤ E (5)∑
k∈Ki

wik = wi, i = 1, 2, . . . , n (6)

wik ≥ 0, i = 1, 2, . . . , n, k ∈ Ki (7)
Ek ≥ 0, k = 1, 2, . . . , r (8)



where T ∗
k (optimal length of k-th part of schedule) are calculated as functions of Ek, P ,

and {wik} for i ∈ Zk from (1) or (2). Ek and wik are variables in NLP1, i.e. an optimal
distribution of energy as well as a optimal distribution of job sizes among combinations
have to be found. NLP1 is non-convex and it is very difficult to solve by standard nonlinear
solvers.

 
 
 
 
 
 
 
 

 

 
 

  
Fig. 1. Exemplary optimal schedule with active energy and power constraint.

3.1 Power constraint only

A schedule for the case of the problem, where limit on energy is inactive is illustrated
Figure 2.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
Fig. 2. Exemplary optimal schedule of the problem with power constraint only.

The length of k-th combination, T ∗
k , depends on the assigned job sizes and the known

amount of P power. In this case, solving the NLP1 problem can be replaced by solving a
simpler problem:

NLP2: minimize T =
r∑

k=1

T ∗
k ({wik}i∈Zk

, P ) (9)

subject to (6)–(7)



where T ∗
k , k = 1, 2, . . . , r,

is the unique positive root of the equation:∑
i∈Zk

s−1
i (wik/Tk) = P. (10)

As you can see in the problem, it is not needed to distribute energy between combi-
nations. NLP2 is convex, which greatly simplifies the search for an optimal solution by
numerical methods.

3.2 Energy constraint only

A schedule for the case of inactive power constraint is shown in Figure 3.
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Fig. 3. Exemplary optimal schedule of the problem with energy constraint only.

In this case NLP3 can be solved instead of NLP1:

NLP3: minimize T =
r∑

k=1

T ∗
k ({wik}i∈Zk

, Ek) (11)

subject to
r∑

k=1

Ek = E (12)

(6)–(8)
where T ∗

k , k = 1, 2, . . . , r,

is the unique positive root of the equation:
Tk ·

∑
i∈Zk

s−1
i (wik/Tk) = Ek. (13)

Similarly to NLP1, the above problem is non-convex, as it also seeks for optimal distri-
bution of energy among combinations. However, the calculation of T ∗

k is easier than in the
general case.

A two-layer specialized numerical method can be proposed here. In the lower layer,
only the optimal division of job sizes among combinations is found. In the higher layer for
a given size division, a dynamic programming algorithm is started, in which energy E is
distributed optimally among combinations in order to obtain the minimal makespan.



4 Summary

On the basis of the above considerations, the following methodology of solving the
problem is justified. Start by solving the convex problem NLP2. Next, check whether the
obtained solution violates the restriction on the available amount of energy E. If this
limitation has been violated, NLP3 should be solved. Then check whether the solution of
NLP3 violates the restriction on P in any part of the schedule. Only when such a rare
situation occurs, it is necessary to solve general NLP1. However, to solve NLP1 one can
use the appropriately modified implementation of the two-layer method indicated in point
3.2.
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1 Abstract

Many scheduling problems are simply too hard to be solved exactly, especially for in-
stances of medium or large size. As a result, the literature on heuristics and metaheuristics
for scheduling is extensive. More often than not, metaheuristics are capable of generating
solutions close optimality or to tight lower bounds for instances of realistic size in a matter
of minutes. Metaheuristics have been refined over the years and there is literally hundreds of
papers published every year with applications to most domains in many different journals.
Most regrettably, some of these methods are complex in the sense that they have many
parameters that affect performance and hence need careful calibration. Furthermore, many
times published results are hard to reproduce due to specific speed-ups being used or com-
plicated software constructs. These complex methods are difficult to transfer to industries
in the case of scheduling problems. Another important concern is the recently recognized
“tsunami” of novel metaheuristics that mimic the most bizarre natural or human processes,
as for example intelligent water drops, harmony search, firefly algorithms and the like. See
K. Sörensen “Metaheuristics - The Metaphor exposed” (2015), ITOR 22(1):3-18. In this
presentation, we review many different flowshop related problems. From the basic flow-
shop problem with makespan minimization to other objectives like flowtime minimization,
tardiness, flowshops with sequence-dependent setup times, no-idle flowshops or other vari-
ants and extensions, all the way up to complex hybrid flexible flowline problems. We will
show how simple Iterated Greedy (IG) algorithms often outperform much more complex
approaches. IG methods are inherently simple with very few parameters. They are easy to
code and results are easy to reproduce. We will show that for all tested problems so far
they show state-of-the-art performance despite their simplicity. As a result, we will defend
the choice of simpler, yet good performing approaches over complicated metaphor-based
algorithms.
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1 Introduction

An important scheduling problem entails a set of n jobs that have to be assigned
and scheduled to a set of m machines in parallel. Each job must be manufactured by
exactly one machine. No machine can process more than one job at a time. In the most
general case machines are said to be unrelated, meaning that the time needed to process
a given job depends on the machine to which it is assigned. This time is denoted as
pij , i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , n}. Unrelated Parallel Machines scheduling problems
(UPM) model high output production shops or even central stages in certain production
processes. Cj is the completion of job j. The most commonly studied objective is the
minimization of makespan (Cmax) and the problem is denoted as R//Cmax. The UPM
is known to be NP-Hard. Practical industrial problems commonly include setup times.
This paper considers the Unrelated Parallel Machine scheduling problem with sequence
dependent Setup times (UPMS) or R/sijk/Cmax, where sijk denotes the amount of setup
time needed at machine i after job j and before job k, j 6= k. The UPMS is signi�cantly
more di�cult than the UPM. As a matter of fact, a special case of the UPMS with a single
machine can be modeled as a particular Traveling Salesman Problem (TSP). While the
literature on the UPM is extensive, the UPMS has been, comparatively speaking, much
less studied. Furthermore, most existing literature deals with heuristics and metaheuristics
and exact approaches are only valid for relatively small to medium instances. One of the
contributions of this paper is a new mathematical reformulation for the UPMS. Another
contribution of this paper is the design of an e�cient mathematical programming based
algorithm. Some existing MILP models can be found in the older literature where problems
of up to 14 jobs could be solved to optimality. It was not until the last few years that
much larger instances of the UPMS were solved to optimality. Avalos-Rosales et al. (2015)
proposed a MILP that e�ciently solved some instances of up to 60 jobs and 8 machines. A
similar MILP previously served as a master problem in some iterative algorithms presented
in Tran et al. (2016). The sizes of the problems solved in these last papers are much larger,
albeit not all are solved to optimality.

2 Proposed models and algorithms

Avalos-Rosales et al. (2015) presented the following MILP, denoted as AAA in this
paper. AAA uses the following variables: Xijk = 1 if k is the successor of j on machine

i, zero otherwise. Yij = 1 if j is processed on machine i, zero otherwise. C̃j ≥ 0 is the



completion time of job j. Finally, Cmax is the maximum completion time (makespan).

min Cmax (1)

s.t.
∑

j∈N0,k∈N,k 6=j

sijkXijk +
∑
j∈N

pijYij ≤ Cmax, i ∈M. (2)

∑
k∈N

Xi0k ≤ 1, i ∈M (3)∑
i∈M

Yij = 1, j ∈ N (4)

Yij =
∑

k∈N0,j 6=k

Xijk, i ∈M, j ∈ N (5)

Yik =
∑

j∈N0,j 6=k

Xijk, i ∈M,k ∈ N (6)

C̃k − C̃j + V (1−Xijk) ≥ sijk + pik, j ∈ N0, k ∈ N, j 6= k, i ∈M (7)

C̃0 = 0 (8)

Cmax ≥ C̃j , j ∈ N (9)

Xijk ∈ {0, 1}, Yij ≥ 0, C̃j ≥ 0.

Sets N and M denote the jobs and machines. Set N0 includes a dummy job. Full nota-
tion details are omitted due to space considerations. Constraints (2) de�ne the makespan.
Constraints (3) ensure that at most one job is scheduled as the �rst on each machine. Con-
straints (4) state that each job is to be processed on exactly one machine. Constraints (5)
and (6) ensure that all jobs have one successor and one predecessor. Constraints (7) provide
a right processing order and break subtours. Constraint (8) sets the completion time of the
dummy job to zero. Constraints (9) are feasible cuts. This model was reported to e�ciently
solve some instances of up to 60 jobs.

We present a model, called MTZ-AM, based on the heterogeneous traveling salesman
problem (TSP). The TSP obtains the minimum length route that visits all nodes/jobs of
N exactly once. When one considers that more than one salesman is available, and that
each city must be visited by exactly one salesman, we have a multiple traveling salesman
problem (m-TSP). The UPMS is a heterogeneous m-TSP, in which the jobs correspond
to cities, and the machines correspond to salesmen. If two cities j and k are visited one
after the other by the same salesman i, in the corresponding UPMS we say that k is the
successor of j on machine i. The cost for the salesman (machine) i of traversing the arc
linking cities j and k (of processing job j and then k) is equal to pij + sijk. MTZ-AM
shares the structure de�ned by equations (1) to (6). Note that constraints (7) are basically
subtour elimination constraints (SEC). We substitute (7), (8) and (9) by the well known
MTZ subtour elimination constraints:

Uj − Uk + n
∑
i∈M

Xijk ≤ n− 1, j, k ∈ N, j 6= k. (10)

This set of constraints ensures that, if k is the successor of j on any machine (and therefore∑
i∈M Xijk = 1), then Uk ≥ Uj + 1. Otherwise (

∑
i∈M Xijk = 0). Note that without

constraints (7), (8) and (9) variables C̃j are no longer needed. Instead, we de�ne the
following set of variables: Uj ∈ Z+ is the number of jobs processed before j on the machine



where j is processed. We add a valid inequality adapted from m-TSP problems:

Uj + (n− 1)
∑
i∈M

Xi0j ≤ n− 1, j ∈ N. (11)

Uj +
∑
i∈M

Xi0j ≥ 1, j ∈ N. (12)

These constraints impose that if a job j is the �rst job on one machine then Uj = 0 re-
gardless whether j is also the last job or not.

Tran et al. (2016) have published a branch and check decomposition algorithm. A mas-
ter problem, basically consisting of constraints (1) to (6), is solved, obtaining a feasible
assignment of jobs to machines. The cycles created in the solutions obtained by this mas-
ter problem are broken by the Concorde TSP solver, yielding optimal schedules on each
machine for the assignments given by the master problem. We present an algorithm which
takes some of these ideas and combines them with our proposed MTZ-AM model. This
algorithm works with a similar master problem:

min Cmax, s.t.:(2), (3), (4), (5), (6), CUTS,Xijk ∈ [0, 1], Yij ∈ {0, 1}.

First the master problem is solved with CUTS = ∅, allowing for a 2% gap, like in Tran et

al. (2016). In subsequent iterations the next feasible solution to the master problem will
be obtained. These solutions yield feasible job-machine assignments, given by the values of
variable Y , denoted by yM . However, no feasible sequence is guaranteed as the X variables
are relaxed and no subtour elimination constraints are included. From the assignments yM

obtained in the master problem, a feasible sequence is built by solving the complete MILP
model in which we minimize the sum of the machine completion times:

min
∑
i∈M

∑
j∈N0,k∈N,k 6=j

sijkXijk +
∑
j∈N

pijy
M
ij

s.t.:(3), (5), (6), (10), (11), (12), Xijk ∈ {0, 1}, Uj ≥ 0.

Afterwards, cuts are added to the master problem. If Nh
i denotes the set of jobs assigned

to machine i in the master problem of iteration h, the proposed cut at iteration h (denoted
by CUT (h)) is: CUT (h) : Cmax ≥ Chi∗

max−
∑

j∈Nh
i
(1− Yij)θhij . We denote this algorithm

as MPA (Mathematical Programming based Algorithm).

3 Computational evaluation and conclusions

We show results for large instances from 200 to 1000 jobs. We run our MTZ-AM model,
the model AAA of Avalos-Rosales et al. (2015), our proposed MPA and our own imple-
mentation of the branch-and-check algorithm of Tran et al. (2016) (B&C). In such an
implementation we solve the master problem with Gurobi, instead of SCIP as the original
authors did, and the TSP in each machine is also solved with Gurobi (instead of Con-
corde's TSP solver). This implementation proved far superior than the original one. The
MILP models were run for a maximum CPU time of three hours. Gurobi 7.0.2 is used
(CPLEX 12.7 proved to be inferior). We measure the Relative Percentage Deviation from
the optimum or best lower bound (RPD). Table 1 shows results broken down by n values.
MTZ-AM performs best in terms of averageRPD. It is for n = 400 that our proposed model
MTZ-AM clearly outperforms the AAA model. Table 2 shows the average results over the
large instances for the best two algorithms tested: our implementation of the Branch-And-
Check in (Tran et al. 2016) (B&C) and our Mathemathical-Programming-Based algorithm



AAA MTZ-AM

n RPD Time RPD Time

200 1.56 7290.98 1.98 8596.62
400 595.69 10 418.89 174.26 9410.34

Average 298.63 8854.94 88.12 9003.48

Table 1. MILP models AAA and proposed MTZ-AM (times in seconds).

(MPA). �Best� corresponds to the time at which the best feasible solution returned by the
algorithm was found. �Master� and �Sched� show the average CPU time in seconds spent
solving the master problem and the sequencing problem respectively. We note that both

B&C MPA

n RPD Time Best Master Sched RPD Time Best Master Sched

200 0.74 6303 2973 6145 158 0.93 6269 1497 6208 61
400 16.67 7488 4206 6290 1198 0.36 7385 2997 7221 164
600 217.78 8496 6698 5373 3122 0.30 7611 4620 7315 294
800 0.37 8623 5494 8017 598
1000 0.41 9256 6015 8026 1195

Average 78.40 7429 4626 5936 1493 0.47 7829 4125 7358 462

Table 2. Results for the large instances for the B&C reimplementation and the proposed MPA.

algorithms perform similarly for n = 200. However, for n = 400, 600 our MPA produces
much lower average RPD than B&C in shorter CPU times. RPD are computed against
the best lower bound. B&C was not able to cope with instances larger than n = 600. We
tested the proposed MPA algorithm for instances of really large sizes (n = 800, 1000). As
a general conclusion, our proposed MPA is able to generate average relative percentage
deviations from lower bounds of 0.41% in the largest instances of 1000 jobs for the UMPS.
This signi�cantly improves upon the previous recent results in the literature by Tran et al.

(2016) of about 2.48% RPD for n = 120.
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1 Problem formulation

In this work we deal with a scheduling problem from the field of green computing
(Hurson and Memon, 2012, 2013), where the main idea is to find a good balance between
computing performance and consumption of natural resources. Since during the execution
of a computer program (a computational job), energy is consumed as a main resource,
appropriate power management is a basic technique for applying the green computing
principles. We consider a problem of scheduling n preemptable, independent jobs on a
single processor, where each job requires for its execution the processor as well as an
amount (unknown in advance) of power, and it consumes some amount of energy during the
execution. Power/energy is a doubly constrained, continuous resource available in positive
amounts P and E, respectively. Processing speed of a job depends on the amount of power
allotted to this job at a time, according to the following relation (Wȩglarz, 1976):

ẋi(t) = dxi(t)
dt

= si(pi(t)), xi(0) = 0, xi(Ci) = wi (1)

where

xi(t) is the state of job i at time t;
si(·) is the continuous, increasing processing speed function of job i, such that si(0) = 0;
pi(t) is the amount of power allotted to job i at time t;
Ci is the completion time (unknown in advance) of job i;
wi is the size (final state) of job i.

Completion of job i requires that:

wi =
∫ Ci

0
si(pi(t))dt. (2)

Thus, job i is characterized by both: processing speed function si and size wi. We will
assume that the processing speed function of each job is strictly concave, as an inverse
of a strictly convex power usage function. Power/energy is a doubly constrained resource
available in positive amounts P and E, respectively. As a consequence, a feasible schedule
of length T has to meet the following constraints for any t ∈ [0, T ], where T = maxi{Ci}
(Wȩglarz, 1981):



n∑
i=1

pi(t) ≤ P. (3)

n∑
i=1

∫ T

0
pi(t)dt ≤ E. (4)

The problem is, in general, to find a vector function p(t) = [p1(t), p1(t), . . . , pn(t)],
pi(t) ≥ 0, i = 1, 2, . . . , n, which, under the constraints imposed, optimizes the chosen
scheduling criterion.

The specificity of the model presented above is that it relates time, power, and energy.
In consequence, three possible optimization problems may arise: minimization of a time-
related criterion, power usage, or energy consumption under constraints imposed on the
other two quantities from which only one or both can be active. In this work we consider
a so-called server problem where the power usage is to be minimized assuming a given
level of a computer system performance. The level of performance is expressed by an
assumed deadline D for the completion of the given set of n jobs. Moreover, we analyze
two cases of the problem: when the energy amount available is not limited, as well as
when it is limited by E. In each case we formulate an appropriate nonlinear mathematical
programming (NLP) problem that finds an optimal power allocation, as well as we discuss
the methodology for solving the problem under consideration.

Let us first formulate two important properties of optimal schedules (Różycki and
Wȩglarz, 2014).

Property 1. For each job i characterized by a strictly concave processing speed function si

and for any energy level E, the following condition holds:

lim
T →∞

Ts−1
i (wi/T ) < E. (5)

Relation (5) can be interpreted so that extending the execution time of a job results
in decreasing the amount of energy consumed by this job. Therefore, from the energy
minimization point of view, it is desirable to extend the schedule as long as possible.

Another property concerning sever problems follows directly from Property 1.

Property 2. In each type of server problem, if a feasible solution exists, the length of an
optimal schedule is equal to D.

Property 2 is important for server problems since it is known that in order to minimize
power usage or energy consumption the schedule has to be completed at the moment of
deadline, under an obvious condition that the resource amounts are sufficient to do so.

In the next two sections power usage minimization server problems of scheduling com-
putational jobs on a single processor will be discussed. Let us firstly notice that since we
consider concave processing speed functions, scheduling on one processor need not be easier
then scheduling on parallel processors. It follows from the fact that for such functions par-
allel schedules lead to optimal solutions, and they are impossible to construct on a single
processor. As a result, some interesting analytical results for the case of one processor can
be obtained. Secondly, it is worth mentioning that since only sequential schedules may be
considered on a single processor, preemptability of jobs can be neglected. It is obvious that
interrupting a job and resuming it later cannot improve the schedule. Thus, each job i,
i = 1, 2, . . . , n, is processed using a constant amount of power pi > 0, i = 1, 2, . . . , n, from
its start to its completion. The pi’s are variables in the NLP formulations presented in the
next two sections.



2 Power minimization under unlimited energy

In this server problem, the objective is to minimize the power usage under a given
deadline D for the completion of the last job, and assuming that the amount of energy
available for the execution of all jobs is not limited. Based on Property 2, the following
NLP problem can be formulated:

NLP1: minimize P = max
1=1,...,n

{pi} (6)

subject to
n∑

i=1

wi

si(pi)
= D. (7)

The objective function (6) represents the maximum power usage over the entire set of
jobs, which is to be minimized. Constraint (7) assures that sum of execution times of all
jobs is equal to deadline D, according to Property 2.

By analyzing problem NLP1, we can formulate an important proposition for the con-
sidered case of a server problem.

Proposition 1. In an optimal schedule all jobs are processed using the same fixed power
amount.

Proof. Let us first remove the nonlinearity from the objective function in NLP1. The
resulting problem is:

NLP2: minimize p (8)
subject to pi − p ≤ 0, i = 1, 2, . . . , n (9)

n∑
i=1

wi

si(pi)
= D. (10)

The Lagrange function for problem NLP2 is as follows:

L(pi, λi, ρ) = p +
n∑

i=1
λi(pi − p) + ρ

(
n∑

i=1

wi

si(pi)
− D

)
. (11)

Gradient conditions take the form:

∂L

∂p
= 1 −

n∑
i=1

λi = 0 (12)

∂L

∂pi
= λi + ρ

wi(si(pi))′

(si(pi))2 = 0, i = 1, 2, . . . , n (13)

from which it is known that:



n∑
i=1

λi = 1 (14)

λi = −ρ
wi(si(pi))′

(si(pi))2 , i = 1, 2, . . . , n. (15)

Orthogonality conditions are as follows:

λi(pi − p) = 0, i = 1, 2, . . . , n (16)

Now, since wi > 0, pi > 0, si(0) = 0, and all functions si are increasing and strictly
concave, thus:

wi(si(pi))′

(si(pi))2 > 0, i = 1, 2, . . . , n. (17)

which means that in (15) for any i, λi = 0 if and only if ρ = 0. However, if ρ = 0, then
it follows from (15) that λi = 0 for every i = 1, 2, . . . , n, which is a contradiction to (14).
Consequently, ρ ̸= 0 and therefore λi ̸= 0 for every i = 1, 2, . . . , n. If so, we can conclude
from (16) that pi = p for every i = 1, 2, . . . , n.

An immediate corollary follows:

Corollary 1. The minimum amount of power p∗ sufficient to execute all jobs before given
deadline D can be found as the unique positive root of the equation:

n∑
i=1

wi

si(p)
= D. (18)

After finding the optimal value of p, the minimum level of energy can be calculated
from:

Emin = p∗ · D. (19)

3 Power minimization under limited energy

In this server problem, the power usage is to be minimized under an assumed limited
amount E of energy and a required deadline D. We start with the condition for the existence
of a feasible solution.

Lemma 1. A feasible solution to the problem exists if there exists a solution to the system
of inequalities:



n∑
i=1

wi

si(pi)
≤ D, (20)

n∑
i=1

wipi

si(pi)
≤ E. (21)

If a feasible solution exists, the following NLP problem, using Property 2, finds a min-
imum power allocation:

NLP3: minimize P = max
i=1,...,n

{pi} (22)

subject to
n∑

i=1

wi

si(pi)
= D (23)

n∑
i=1

wipi

si(pi)
≤ E. (24)

In problem NLP3 the power usage (22) is minimized subject to the constraints that the
deadline is met (23) as well as the available amount of energy is not exceeded (24). Notice
that now Corollary 1 can be used to make an attempt to find an optimal solution. If p∗

calculated from (18) fulfils constraint (24), it will define the optimum power allocation.
However, if it does not, it means that a power allocation with different pi, i = 1, 2, . . . , n,
leads to optimum and, in such a case, it is necessary to solve problem NLP3.

In any case, after finding an optimum power allocation, the energy consumption in the
obtained schedule can be calculated from formula:

E∗ =
n∑

i=1
E∗

i =
n∑

i=1

wip
∗
i

si(p∗
i )

. (25)

However, finding the minimum level of energy sufficient to realize the power-optimal
schedule requires a solution of another NLP problem:

NLP4: minimize Emin =
n∑

i=1

wipi

si(pi)
(26)

subject to
n∑

i=1

wi

si(pi)
= D (27)

pi ≤ P ∗, i = 1, . . . , n (28)

where P ∗ is the optimal solution to problem NLP3.

4 Summary

In this work we consider a problem of minimizing the power usage while scheduling
preemptable, independent jobs on a single processor to meet a schedule deadline. Each



job uses some amount of power and consumes some amount of energy. We consider two
situations: when energy is not, and when it is limited. For these cases we formulate mathe-
matical programming problems to find optimal power allocations. In the case of unlimited
energy, we prove that all jobs are processed using the same power amount. We also show
how to calculate the minimum amount of energy for the power-optimal schedules.
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1 Introduction

The resource-constrained project scheduling problem (RCPSP), cf. Pritsker (1969), is a
widely researched combinatorial optimization problem. Solving the RCPSP involves find-
ing an assignment of activity starting times which minimizes the project duration without
violating constraints imposed by precedence relations between activities and limited re-
source availabilities. There are given activities j ∈ J including dummy start activity 0
and dummy end activity J + 1. Each activity j has an associated duration dj , resource
consumptions kjr on renewable resources r ∈ R, and may only start after all of its prede-
cessors i ∈ Pj are finished. Each resource r has a constant capacity availability Kr in each
time period t ∈ T . In any period t, the total resource consumption of each resource r from
all activities executed in this period must not exceed the capacity level Kr.

This problem setting itself is widely applicable and general. Many industrial scheduling
problems like machine scheduling are special cases of the RCPSP. However, there are situ-
ations in practice, in which some assumptions of the RCPSP are invalidated or additional
assumptions are required. A good overview of extensions and generalizations of the RCPSP
can be found in Hartmann and Briskorn (2010).

One aspect often found in industrial applications like aircraft engine remanufactur-
ing is the consideration of costly overcapacity in conjunction with makespan-dependent
revenues. This problem setting resembles known generalizations of the RCPSP like the
makespan minimization for exogenous fluctuating capacities, cf. Hartmann (2015), or like
the minimization of endogenous fluctuating capacities for a given deadline, cf. Deckro
(1989). However, the specific combination of simultaneous makespan and flexible capacity
optimization is not yet covered in literature. Therefore, we propose a new extension of the
RCPSP. We also discuss this topic in a working paper submitted to a journal, see Schnabel
et al. (2017).

2 Problem setting

The resource-constrained project scheduling problem with makespan-specific revenues
and option of overcapacity (RCPSP-ROC) extends the well-known RCPSP by allowing an
increase of the freely available capacity levels on a per period basis through the utilization
of costly and bounded overcapacity. This capacity level extension instrument can be inter-
preted either as overcapacity acquired by renting additional machines (or lease workers) or
as overtime of employees. Furthermore, the RCPSP-ROC incorporates customer specific
revenues depending on the time required for project completion, i.e., makespan. These
revenues are assumed to be monotonically decreasing, meaning that a customer is never
willing to increase his payment in case of a delay.

A new trade-off emerges when combining these two aspects in the RCPSP framework:
The planner may either increase revenue through speedups obtained by additional usage



of overcapacity or decrease cost through reduction of overcapacity. However, he can never
simultaneously increase revenue while decreasing costs.

2.1 Model formulation

A precise description of the RCPSP-ROC requires three additional parameters: The
payment reserves of a customer ut : T 7→ R, the costs κr per capacity unit and per pe-
riod of overcapacity, and the upper bound for overcapacity zr. The problem can then be
formalized extending any mixed integer programming formulation of the RCPSP. As one
possible option, we chose to modify the binary pulse variable formulation given in Pritsker
(1969). By definition, xjt is set to one if, and only if, activity j finishes in period t.

Model RCPSP-ROC

max F =

LFTJ+1∑
t=EFTJ+1

ut · xJ+1,t −
∑
r∈R

∑
t∈T

κr · zrt (1)

subject to

LFTj∑
t=EFTj

xjt = 1, j ∈ J (2)

LFTi∑
t=EFTi

xit · t ≤
LFTj∑
t=EFTj

xjt · t− dj , j ∈ J , i ∈ Pj (3)

J∑
j=1

t+dj−1∑
τ=t

kjr · xjτ ≤ Kr + zrt, r ∈ R, t ∈ T (4)

xjt ∈ {0, 1}, j ∈ J , t ∈ {EFTj , . . . , LFTj} (5)
zrt ∈ [0, zr], r ∈ R, t ∈ T (6)

Equation (1) captures the objective of maximizing the profit, which is computed from
the realized project revenue depending on the makespan and the overcapacity costs incurred
by the schedule. These costs for overcapacity are computed using the auxiliary variable zrt,
which is linked by equations (4) to the amount of overcapacity used.

Equations (2) enforce that each activity is executed exactly once. The required order
of activity execution is incorporated through constraints (3). Restrictions (4) then limit
the cumulative demands in the schedule to the freely available fixed resource availabilities
supplemented by the chosen amount of overcapacity. Since the objective of this model
indirectly minimizes zrt, this auxiliary variable will always store the amount of overcapacity
that was actually necessary in order to gain resource feasibility.

The remaining domains of binary primary variable xjt and continuous variable zrt are
specified in equations (5) and (6) respectively, with equations (6) also enforcing an upper
bound and non-negativity for overcapacity. In order to tighten the latest finishing times
LFTj without excluding the optimal solution, as a deadline we apply the makespan of
the schedule generated by the serial schedule generation scheme (SGS) using the canonical
activity list without using any overcapacity at all.

2.2 Properties of the problem setting

The RCPSP is a special case of the RCPSP-ROC, e.g., ut = −t ∀ t, zr = 0 ∀ r.
Therefore, the NP-hardness of the RCPSP implies the impracticality of solving industrial



size instances of the more general RCPSP-ROC in acceptable time using exact solution
methods.

Our problem setting combines the minimization of overcapacity (non-regular term) with
the maximization of makespan-dependent revenues (regular term). The non-regular com-
ponent in the objective prevents direct application of heuristics developed for the RCPSP,
cf. Ballestin and Blanco (2015). This motivates the design, implementation, and evaluation
of novel heuristics for the RCPSP-ROC.

3 Solution approaches

The representation or encoding of the solution is a critical core element of many heuris-
tics. A key concern when designing a solution encoding is the following trade-off: The state
space of the encoding should ideally be big enough to contain at least one optimal solution
while simultaneously being as small as possible.

An example for such an efficient encoding of schedules for the RCPSP is the activity
list. Unfortunately, just reusing the activity list as encoding in conjunction with the serial
SGS as decoding procedure is not possible due to the non-regular objective. Therefore,
new solution encodings were developed for the RCPSP-ROC. They include the amount
of overcapacity permitted in certain periods or the information whether one activity is
allowed to use overcapacity or not. These encodings are embedded in two different types
of heuristics.

3.1 Genetic Algorithms

Genetic algorithms are very powerful for heuristically solving the RCPSP and its vari-
ants, see Kolisch and Hartmann (2006). For any encoding, a genetic algorithm can be
obtained by specifying the construction of the initial population and the genetic operators
(crossover, mutation, selection). An individual is simply an encoded solution and its fit-
ness value is the objective value of that solution. The genetic algorithm for the RCPSP
developed by Hartmann (1998) was used as a starting point for developing the genetic
algorithms and adapted to the encodings for the RCPSP-ROC.

3.2 LocalSolver

Furthermore, LocalSolver, a relatively new commercial proprietary black-box heuristic
solver1, was used for solving the RCPSP-ROC. LocalSolver provides a modeling language
for specifying the objectives and constraints of the model similar to GAMS or OPL. Ad-
ditionally, it offers an API for specifying models. This API then provides so-called “native
functions”, a mechanism that allows inserting arbitrary functions implemented in a general-
purpose programming language into any expression of the model. The decoding procedures
(e.g. activity list 7→ starting times) already implemented for the genetic algorithms as fit-
ness functions were plugged into small LocalSolver models. These models only specify the
structure of the solution encoding.

4 Results and conclusion

The numerical experiments are based on two test sets consisting of a filtered subset
of 270 and 585 project instances from j30 and j120 respectively based on the PSPLIB,
cf. Schnabel et al. (2017) for details on the instances, e. g., the definition of the revenue
1 http://localsolver.com
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Fig. 1: Numerical results for extended PSPLIB test sets

function. Figure 1a shows the progression of average optimality gaps for small instances
with 30 non-dummy activities in the first 0.1 seconds. The optimal reference solutions
were acquired using Gurobi. Figure 1b shows the progression of average gaps to best-
known solutions for larger instances with 120 non-dummy activities in the first 0.5 seconds.
For each instance, the best-known solution is the highest profit schedule of all considered
methods at the end of computation.

In summary, the results show that the developed genetic algorithm is very competitive
and outperforming the other solution procedures evaluated both in the short and in the
long run with small and large instances. Interestingly, utilizing the developed solution
encodings in LocalSolver was also very efficient, although not as efficient as using the
genetic algorithm. Both heuristic approaches were easily able to beat Gurobi on the MIP-
formulation. These results indicate the possibility of constructing efficient methods for
solving this generalized version of the RCPSP by adapting and combining ideas from
scheduling literature for both cost- and time-based objective functions.
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1 Introduction

Time-dependent scheduling concerns with processing times that are a function of start
time (Gawiejnowicz 2008). In this work, we consider a rather generic problem that allows
for nonmonotonous convex processing times. With it, we aim to lay groundwork for this
recent branch of time-dependent scheduling theory. The problem setting surfaced while
automating production planning of continuously moving assembly lines. In it, we consider
sequencing of assembly operations J for one worker at one workpiece. Notably, before an
operation j ∈ J can be performed, necessary parts need to be fetched from a corresponding
container at the line side. For this purpose, the worker leaves the workpiece and walks
along the conveyor. As the conveyor continually moves the workpiece, walking distance
varies over time. It is minimum at time τj , when the moving workpiece just passes the
according container. Else, it increases linearly. Thus, walk time is depicted by a V-shaped,
piecewise linear function of time. After each walk, the worker performs the corresponding
operation in assembly time lj . The objective is to reduce total walk time by permuting the
operations. In scheduling terms, we subsume a walk and an assembly operation by a job
with a time-dependent processing time, and minimize total makespan.

Definition 1 (Problem P ) We are given slopes a ∈ [0, 1], b ∈ [0,∞), and a set of n
jobs J = {1, . . . , n}. Each job j ∈ J is given an assembly time lj ∈ Q≥0 and an ideal
start time τj ∈ Q. We decide on job sequence S : J → {1, . . . , n}, which is a permutation
of the jobs J to assign each job a distinct position. Its inverse is denoted by S−1. For
each job j ∈ J , we calculate start time tj = CS−1(S(j)−1), iteratively from the global start
time tmin = C0 (usually zero), and completion time Cj = tj + pj(tj) with the start time
dependent processing time pj(t) = lj + max{−a (t− τj), b (t− τj)}. The objective is to find
a job sequence S that minimizes makespan ϕ(S) = CS−1(n) = Cmax.

In three-field notation, the problem is stated as 1 | pj = lj +max{−a (t−τj), b (t−τj)} |
Cmax. The processing time pj = pj(t) of job j ∈ J is shortest if j starts at t = τj , increasing
with slope a for decreasing t < τj , else with slope b, thus it is asymmetric. The completion
time Cj = t + pj(t) is increasing with t because a ≤ 1 and b ≥ 0. Therefore, idle time
between jobs may only increase the objective; it is thus excluded by definition. In the
literature, problem setting is introduced with symmetric factors a = b in Sedding and
Jaehn (2014). The variant in Jaehn and Sedding (2016) measures a job’s deviation from
the mid-time, when exactly half of the whole job has been processed. The case with one
common ideal start time and a variable global start time tmin is polynomial (Farahani and
Hosseini 2013). With a fixed, given tmin and asymmetric slopes however, we show in the
following that the decision problem is NP-complete by reduction from Even Odd Partition.
A highlight of our proof is its compactness compared to the approach for the similar and
more specialized problem setting in Jaehn and Sedding (2016). Moreover, we introduce two
important polynomial cases which additionally apply for multiple ideal start times.
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2 Polynomial Cases

Lemma 1 Given an instance of P and a job sequence S that sorts the jobs nondecreas-
ingly by lj − bτj. If each job starts at or after its ideal start time tj ≥ τj for all j ∈ J ,
objective ϕ(S) is minimum and it is expressed by

ϕ(S) =
∑
j∈J

(lj − bτj) (1 + b)
n−S(j)

. (1)

Lemma 2 Given an instance of P . If each job starts at or before its ideal start time tj ≤ τj
for all j ∈ J , the objective is expressed by

ϕ(S) =
∑
j∈J

(lj + aτj) (1 − a)
n−S(j)

. (2)

If S furthermore sorts the jobs nonincreasingly by lj + aτj, then ϕ(S) is minimum.
On the other hand, given an objective value ϕ, the start time tmin = tS−1(1) of the first

job in the sequence S−1(1) is

tmin = (1 − a)
−n

ϕ−
n∑

j∈J

(lj + aτj) (1 − a)
−S(j)

. (3)

3 Computational Complexity

We analyze the computational complexity of P using a partition-type NP-hard problem:

Definition 2 (Even Odd Partition Problem (Garey, Tarjan and Wilfong 1988))
We are given a set of n = 2h natural numbers X = {x1, . . . , xn} where xi−1 < xi for all
i = 2, . . . , n. The question is whether there exists a partition of X into subsets X1 and
X2 := Y \X1 such that

∑
x∈X1

x =
∑

x∈X2
x, while for each i = 1, . . . , h, set X1 contains

exactly one element of set {x2i−1, x2i}.

We reduce from the Even Odd Partition Problem to the decision version of P , which
asks, for a given threshold Φ ∈ Q, if there exists a sequence S with makespan ϕ(S) ≤ Φ.

Theorem 1. The decision version of P with a common τ = τj ∀j ∈ J is NP-complete.

Proof. We are given an instance of the Even Odd Partition Problem as of Definition 2.
Let us define a corresponding instance of P . For this, we choose an arbitrary a ∈ (0, 1),
and set b = (1 − a)

−1 − 1. Then, b ∈ (0,∞) and (1 + b) = (1 − a)
−1. Let job set J =

{1, . . . , 2n + 1}, with ln+j = 0 for j = 1, . . . , n, l2n+1 = 2q for q = 1
2

∑
i∈X xi, and

l2k−i = x2k−i (1 + b)
k−h−1 for k = 1, . . . , h and i = 0, 1. Hence, lj−1 < lj for j = 2, . . . , n,

and ln < l2n+1. Moreover, we set the common ideal start time τ = 0 and the global start
time tmin = −q. The decision version of this instance asks if there exists a sequence S
where objective ϕ = Cmax is below threshold Φ = 3q.

Solving the sequencing problem results in an optimum sequence S, which we divide into
three partial sequences for our analysis. Partial sequence S0 consists of jobs n + 1, . . . , 2n,
and we assume this order without loss of generality. The rest is divided into S1, consisting
of jobs that start before 0, and S2 of jobs that start at or after 0. By Lemma 2, S1 is
sorted nonincreasingly by lj , while S2 has nondecreasing lj (Lemma 1). Moreover, S0 is
between S1 and S2 in S as the jobs in S0 have the smallest assembly times. Let Ĉ denote
the completion time of S1 and t̂ ≥ 0 the start time of S2. Hence, sequence S0 starts at Ĉ
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and completes at t̂. As a < 1, if a job j with lj = 0 starts at Ĉ < 0, then it completes
at t̂ < 0. This contradicts the sorting of the jobs in S1 ∪ S0. Thus, there must be Ĉ > 0.
Then, t̂ = Ĉ (1 + b)

n by Equation 1. As l2n+1 has the longest assembly time, job 2n + 1 is
either the first job in S1 or the last job in S2. However, we show that job 2n + 1 is not in
S1 if Cmax ≤ Φ: for a contradiction, let S(2n + 1) = 1. Then, job 2n + 1 starts at −q and
has a completion time of −q + l2n+1 + aq > 0, hence equals Ĉ = q (1 + a). By Lemma 1,
jobs n + 1, . . . , 2n and then jobs 1, . . . , n are appended in nondecreasing order of lj , thus

Cmax = Ĉ (1 + b)
2n

+
∑

j=1,...,2n

lj (1 + b)
2n−(S(j)−1)

= Ĉ (1 + b)
2n

+
∑

j=1,...,n

lj (1 + b)
n−j

= Ĉ (1 + b)
2n

+
∑

k=1,...,h

l2k−1 (1 + b)
n+2−2k

+ l2k (1 + b)
n+1−2k

> Ĉ (1 + b)
2n

+
∑

k=1,...,h

(l2k−1 + l2k) (1 + b)
n+1−2k

= Ĉ (1 + b)
2n

+
∑

k=1,...,h

(
x2k−1 (1 + b)

k−h−1
+ x2k (1 + b)

k−h−1
)

(1 + b)
n+1−2k

> Ĉ +
∑

k=1,...,h

(x2k−1 + x2k) = Ĉ + 2q = q (1 + a) + 2q = q (3 + a) > 3q = Φ.

Hence, job 2n + 1 is the last job in S2 in any optimum S with Cmax ≤ Φ. Moreover we
note as S0 starts at or after 0, partial sequence S1 constains at most n jobs.

Let S be optimum for the given instance and assume Cmax ≤ Φ. Define h1 as the
number of jobs in S1, and define h2 = n− h1. Given t̂ ≥ 0 and Equation 3, there is

tmin = Ĉ (1 − a)
−h1 −

∑
k=1,...,h1

lS−1

1
(k) (1 − a)

−k
= Ĉ (1 + b)

h1 −
∑

k=1,...,h1

lS−1

1
(k) (1 + b)

k
.

As S2 starts at t̂, with Equation 1 there is

Cmax = t̂ (1 + b)
h2+1

+
∑

k=1,...,h2+1

lS−1

2
(k) (1 + b)

h2+1−k

= t̂ (1 + b)
h2+1

+ l2n+1 +
∑

k=1,...,h2

lS−1

2
(k) (1 + b)

h2+1−k

= t̂ (1 + b)
h2+1

+ l2n+1 +
∑

k=1,...,h2

lS−1

2
(h2+1−k) (1 + b)

k
.

Define d = (1 + b)
n+h2+1 − (1 + b)

h1 , and

f1(k) =

{
lS−1

1
(k), 1 ≤ k ≤ h1,

0, else,
f2(k) =

{
lS−1

2
(h2+1−k), 1 ≤ k ≤ h2,

0, else.

Then with t̂ = Ĉ (1 + b)
n,

Φ− tmin ≥ Cmax − tmin

⇐⇒ 4q ≥ t̂d + l2n+1 +
∑

k=1,...,h2

lS−1

2
(h2+1−k) (1 + b)

k
+

∑
k=1,...,h1

lS−1

1
(k) (1 + b)

k

⇐⇒ 2q ≥ t̂d +
∑

k=1,...,n

(f1(k) + f2(k)) (1 + b)
k
. (4)

As h1 ≤ n and h2 ≥ 0, there is d > 0. In the following, we show that the minimum of∑
k=1,...,n (f1(k) + f2(k)) (1 + b)

k is 2q, hence Equation 4 requires t̂ = 0.
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– By Hardy, Littlewood and Pólya (1923, Theorem 368, p. 261) and as (1 + b)
k increases

with k, sum f1(k) + f2(k) decreases with k a optimum S.
– For any i, j = 1, 2 such that i ̸= j, if fi(k) = 0 for some k while fj(k+1) > 0, then S is

not optimum: an improved S rather has fi(k) > 0 and fj(k+ 1) = 0. By this argument
and as h1 + h2 = 2h, it follows that h1 = h2 = h for an optimum S.

– Moreover, Hardy et al.’s (1923) theorem implies fi(k − 1) > fj(k) for k = 2, . . . , h
and any i, j = 1, 2. This is the case for an optimum S as of Lemma 1 and Lemma 2.
Therefore, S has {S(2k−1), S(2k)} = {h+1−k, h+k} (in any order) for k = 1, . . . , h.

– It follows that an optimum S has∑
k=1,...,n

(f1(k) + f2(k)) (1 + b)
k

=
∑

k=1,...,h

(l2k−1 + l2k) (1 + b)
k

=
∑

k=1,...,h

(
x2k−1 (1 + b)

−k
+ x2k (1 + b)

−k
)

(1 + b)
k

=
∑

k=1,...,h

x2k−1 + x2k = 2q.

The value of t̂ follows from Equation 2 and S−1
1 (h+ 1− k) ∈ {2k− 1, 2k} for k = 1, . . . , h:

t̂ = −q (1 − a)
h

+
∑

j=1,...,h

lS−1

1
(j) (1 − a)

h−j

= −q (1 − a)
h

+
∑

k=1,...,h

lS−1

1
(h+1−k) (1 − a)

h−(h+1−k)

= −q (1 − a)
h

+
∑

k=1,...,h

(
xS−1

1
(h+1−k) (1 + b)

k−h−1
)

(1 + b)
1−k

= −q (1 − a)
h

+ (1 − a)
h

∑
j=1,...,h

xS−1

1
(j).

Then, t̂ = 0 ⇐⇒
∑

j=1,...,h xS−1

1
(j) = q ⇐⇒ {xS−1

1
(j) | j = 1, . . . , h} = X1 where X1 is a

solution for the Even Odd Partition Problem.
Therefore, the Even Odd Partition Problem instance solves the corresponding P in-

stance and vice versa. As the construction is polynomial and as, given a correct partition,
S and ϕ(S) can be obtained in polynomial time, the stated problem is NP-complete. ⊓⊔
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1 Introduction

Project scheduling is crucial to project success as it provides a point-of-reference for
long-term resource allocation and project scope management. The resource-constrained
project scheduling problem (RCPSP) is a well-known problem in the context of project
scheduling (Brucker et al. 1999). Many research efforts have focused on the development of
various extensions of the basic RCPSP (Hartmann and Briskorn 2010) as well as multiple
(meta)heuristic and exact solution procedures (Kolisch and Hartmann 2006, Hartmann
and Kolisch 2000). However, one assumption that is retained in most scheduling problems
requires that the project structure is deterministic. This implies that the project structure,
which is imposed by the activities and the precedence relations between the activities,
is fixed and completely known prior to the project execution. However, this assumption
has been rendered obsolete in most real-life projects due to the ever-increasing complexity
and uncertainty in the project environment (Wiers V. 1997). Therefore, several researchers
have already considered improving the flexibility in the execution mode of a project. This
would allow certain project elements to be executed in alternative ways in order to respond
to unexpected disruptions. In this regard, we should mention a well-studied extension of
the RCPSP, the so-called multi-mode RCPSP (MRCPSP) (Elmaghraby S. 1977). In recent
years, a more general scheduling problem has been introduced that considers alternative
execution modes at the higher work package (WP) level in the project work breakdown
structure. In the remainder of this abstract, we will refer to this scheduling problem as the
RCPSP with alternative project structures. The most important feature of this problem
formulation is the incorporation of alternative execution modes in the scheduling phase.
These alternatives are necessary in order to model the uncertain project structure in future
stages or are preferred in order to overcome the complex and fast-changing project envi-
ronment. The objective of the research at hand is to construct a (near) optimal schedule
given the alternative project structure. Therefore, the discussed problem shows how to
leverage alternative project structures in order to tackle an uncertain project environment.
Several research efforts on scheduling with alternative structures have been conducted in
various research fields over the past decades (Kis T. 2003, Capacho et al. 2009, Capek et
al. 2012, Kellenbrink and Helber 2015, Vanhoucke and Coelho 2016).

The main contributions of our research are threefold. (1) The existing research efforts
on scheduling with alternative project structures have been developed largely indepen-
dent. Therefore, we propose a comprehensive classification framework to uniquely identify
and define different types of alternative project structures. (2) Since most of the existing
datasets for the proposed problem formulation are small-scale and randomly generated, we
construct a large dataset of artificial problem instance that supports the proposed frame-
work generated using RanGen 2 (Vanhoucke et al. 2008). (3) We develop a metaheuristic
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solution approach that is tailored to the specific characteristics of the alternative project
structures in the discussed classification framework to solve the data instances in the new
dataset.

2 Problem description

In this abstract, we discuss the RCPSP with alternative project structures which ex-
tends the basic RCPSP by defining alternative ways to execute a subset of interrelated
activities in the project. In order to model the alternative execution modes of the WPs,
we distinguish between fixed and alternative activities. Fixed activities should always be
present in the final project schedule and, consequently, the corresponding resource and
precedence constraints should always be satisfied. However, the presence of the alternative
activities in the final project schedule is optional and depends on the selected alternative
project structures. Consequently, the project scheduling problem consists of two subprob-
lems, i.e. the decision and the scheduling subproblem. The objective is to select for each
WP exactly one alternative execution mode such that the resulting precedence, resource
and logical feasible schedule has a minimal project makespan.

3

0
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2

7

6 9

4

5

8

10

Fig. 1. Illustrative example of project network with alternative project structures

We illustrate the concept of alternative project structures based on the simple project
network (see figure 1) derived from Kellenbrink and Helber (2015). This example shows a
project network with 9 non-dummy activities (i.e. assume activities 0 and 10, respectively,
the dummy start and end activity) and default finish-to-start precedence relations with a
zero time lag. The symbol ’)’ in figure 1 indicates that a choice is triggered between multiple
alternative execution modes of a WP. Therefore, only one of the corresponding precedence
relations should be considered during project scheduling, e.g. a choice is triggered between
the (alternative) activities 1 and 2. The choice for activity 2 will subsequently cause the
implementation of either activity 4 or 5. Consequently, all non-dummy activities in this
example can be classified as alternative activities since their presence in the final schedule
is optional. Note that the choice for one alternative might enforce the implementation of an
activity that also belongs to another alternative. This is represented in figure 1 by means
of a dotted line, e.g. between activities 7 and 8.

3 Methodology

Based on the aforementioned terminology, we have constructed a classification matrix
to unambiguously define projects with alternative project structures based on the relative
number of alternative activities and the type of relations between the alternative activities.
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Subsequently, we propose a tabu search (TS) procedure (Glover F. 1986) that is tailored to
the characteristics of the alternative project structure based on the presented classification
matrix. In this research, we first test various strategies for the initial solution generation.
Each strategy will assign a weight to the alternative execution modes based on the total
work content (TWC) or sum of durations (SOD), adjusted for the specifications of the
alternative project structure, in order to prioritise alternatives. The improvement proce-
dure of the TS consists of two components: a neighbourhood structure (NH) and a local
search (LS). Given the nature of the overall project scheduling problem, the proposed TS
alternately improves the scheduling and decision subproblem. Where the NH and LS for
the scheduling subproblem are based on best practices in literature, novel heuristic im-
provement techniques (i.e. NH and LS) are introduced for the decision subproblem. For
each of the strategies, the characteristics of the alternative project structures are used to
guide the search procedure to a high-quality final solution. An overview of the procedure is
given in figure 2. The main methodological contributions are threefold. First, the presented
procedure will not tackle both subproblems in a sequential way, rather in an integrated
way. Secondly, the strategies of the TS are adjusted to incorporate the characteristics of
the problem instances. Third, different variants of the building blocks of the TS, which
either focus on the scheduling or selection subproblem, are constructed.

Initial solution generation

Neighbourhood 
structure

Local search

scheduling subproblem

Neighbourhood 
structure

Local search

decision subproblem

Final solution

Problem instance
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Fig. 2. Overview of TS procedure

4 Computational experiments

The aim of the computational experiments is threefold. First, we compare the perfor-
mance of different strategies for the building blocks of the TS. Secondly, we validate the
solution quality, expressed as the overall best project makespan with a stopping criterion
of 5,000 generated schedules, obtained using the TS through a comparison with a multi-
start LS routine. Third, we quantify the impact of the characteristics of alternative project
structures on the solution quality. The computational experiments provide insights on the
above research questions.

1. The impact of the decision subproblem outperforms the impact of the scheduling sub-
problem on the solution quality.

2. The computational results show that the memory structure of the TS pays off for the
problem at hand as it outperforms the multi-start LS routine.

3. According to expectations, an increased relative number of alternatives significantly
improve the solution quality, while the complexity of the alternative project structure,
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as expressed by the type of relations between the alternatives, has a negative impact
on the project makespan (see the preliminary results in table 1).

Degree of flexibility
Low Medium High

Degree of Low - -6.23 -9.45
complexity Medium 2.52 0.48 -0.63

High 7.06 5.97 4.71

Table 1. The impact of the degree of flexibility and complexity on the project makespan (%)

The extension of the problem formulation to incorporate other concepts discussed in the
literature on project scheduling with alternatives together with a comparison of the com-
putational results are part of future research.
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1 Introdution

This paper presents a new pre-proessing proedure for the Multi-Mode Resoure-

Constrained Projet Sheduling Problem (MRCPSP). The objetive is �nding a feasible

shedule with minimal makespan. The MRCPSP is a NP-hard problem. Even �nding a

feasible mode assignment is NP-omplete if the instane has more than one non-renewable
resoure (Kolish and Drexl (1997)).

To redue the number of variables of this NP-hard problem, di�erent pre-proessing

tehniques have been presented in the literature. The most ited one is the proedure

of Spreher et al. (1997). It deletes ine�ient modes as well as redundant non-renewable

resoures and has shown to be very e�etive on the PSPLIB instanes (Kolish and Spreher

(1997)). The approahes of Zhu et al. (1997) and Stürk and Gerhards (2018) are based

on alulating new earliest starting times whih redue the number of variables in time-

indexed models. While the former approah uses heuristi methods, the latter one uses

mathematial programming.

Reently, the new benhmark data set MMLIB has been presented by Van Peteghem

and Vanhouke (2014). These instanes are designed in suh way that the proedure of

Spreher et al. (1997) does not have any impat at all. As a result no proedure exists

whih is able to redue the number of modes for the MMLIB instanes. Therefore, we

develop a tehnique whih aims to redue the number of modes of these instanes. It an

be used as a pre-proessing proedure and be embedded in a solution approah.

2 Problem desription

The MRCPSP onsists of a set of ativities A = {0, ..., n+1}. Ativity 0 and n+1 at
as dummy ativities and denote the start and the end of the projet. Eah ativity i an be
exeuted in a mode m out of the orresponding set of modes Mi. Preedene onstraints

E exist among some ativities. Eah ativity has to be assigned to exatly one mode and

one starting time while minimising the makespan.

Resoure restritions have to be adhered. Therefore, a set of renewable resoures R
� available per time unit � is given. This resoure type replenishes on eah time unit.

Furthermore, a set of non-renewable resouresRn
exists whih do not replenish. Aording

to the hosen modem, ativity i has a duration di,m ∈ Z+
as well as a resoure onsumption

ri,m,k ∈ Z+
for eah resoure k ∈ R∪Rn

. A mode annot be hanged one it is exeuted.

In time-indexed models (for example the one of Talbot (1982)) eah ativity i has an
earliest starting time ESi and a latest starting time LSi. Alternatively, earliest ompletion

times ECi and latest ompletion times LCi are used. The values of ESi and ECi an be

derived by using the ritial path method (CPM, Kelley (1963)). For the values of LSi and
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LCi a feasible time horizon T of the projet is needed. Based on T the values of LSi and

LCi an be omputed with bakward reursion.

3 A new pre-proessing proedure

The pre-proessing proedure that is presented in this work highly depends on the

quality of T . Therefore, it an only be used if the makespan of a feasible solution of an

instane is known. The proedure uses the relationship between LCi and T : the value of T
is set to the known makespan of the feasible solution. Then eah LCi is omputed, starting

with LCn+1 = T .
With all ESi and LCi values known, eah mode m of eah ativity i ∈ A an be

investigated whether the following ondition (1) holds:

LCi ≥ ESi + di,m . (1)

If an ativity i′ is started at its earliest starting time ECi′ and the duration di′,m′
of a

modem′
extends the latest ompletion time LCi′ , the time horizon T annot be reahed any

more. Sine the objetive is minimising the makespan of the projet, using mode m′
would

not be reasonable. If m′
is part of the mode vetor it is impossible to reah a makespan

whih is equal or better than T . Thus, the optimal makespan an never be realised with

the hoie of this mode. Therefore, these modes are alled non-optimal modes.

A similar idea of disarding modes has already been proposed in the branh-and-bound

proedure of Spreher and Drexel (1998). The idea was used for trunating the branh-

and-bound tree. In ontrast, the presented proedure has the advantage that it an be used

as pre-proessing proedure for exat and heuristi methods.

An example of a non-optimal mode is given in Figure 1. Consider an ativity i with the

ESi = 2 and LCi = 6. Ativity i has two modes. Using the �rst mode, the ativity has a

duration of di,1 = 2. Exeuted in the seond mode the duration of i is di,2 = 5. While the

�rst mode ful�ls ondition (1), the seond mode does not. Exeuted at the earliest starting

time, it still extends the latest ompletion time for ativity i. Identi�ed as a non-optimal

mode, the seond mode of ativity i an be exluded before the searh for the optimal

solution starts.

d i,2 = 5

ES i = 2 LC i = 6 d i,m 

Fig. 1. Example of a non-optimal mode

A neessary ondition for the usage of this pre-proessing proedure is a knownmakespan

of a feasible solution whih an be used for T . This an be ahieved in two ways:

1. Based on a known feasible solution. This ould be a solution from a previous searh or

the best solution reported to a database.

2. Embedded into an algorithm or a heuristi eah time a better solution is found.

The impat of the proposed proedure on the MMLIB is investigated in the following

setion.
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4 Experimental investigation

To test the e�etiveness of the presented proedure it is applied to the MMLIB in-

stanes. The number of redued modes is used as a measure of e�etiveness due to the

fat that the number of variables dereases with the redution of modes. The experiments

were arried out on a PC with an Intel Xeon X5650 CPU at 2.66 GHz. The algorithm is

implemented in C#.

First of all the proedure of Spreher et al. (1997) was tested on the MMLIB instanes.

We an on�rm the statement of Van Peteghem and Vanhouke (2014) � neither a mode

nor a resoure ould be deleted for any MMLIB instane.

We then tested the presented pre-proessing proedure. The best known solutions

(BKS) reported on the data base www.mmlib.eu are used as T for eah instane. Based

on T all LCi values of an instane were omputed. Then eah mode of eah ativity was

tested whether modes exist that extend the latest ompletion time of an ativity if this

ativity is started at its earliest starting time. If an ativity extends its latest ompletion

time in a mode, this mode was identi�ed as non-optimal and therefore deleted.

Table 1. Non-optimal modes of the MMLIB after using the BKS as T

MMLIB50 MMLIB100 MMLIB+

Total number of instanes 540 540 3,240

Number of instanes with at least one non-optimal mode 352 347 1,327

Average redution of non-optimal modes 17.69% 13.45% 13,52%

Maximal redution 44.00% 32.33% 55.78%

Table 1 shows the number of non-optimal modes that an be identi�ed for the MMLIB

instanes. The omputational time is less than one seond for eah instane. Using the best

known solutions of the data base a mode redution was possible for 65.19% / 64.26% /

40.96% of the MMLIB50 / MMLIB100 / MMLIB+ instanes, respetively. For one instane

of the MMLIB+ 55.78% of the given modes were identi�ed as non-optimal. This leads to

a signi�ant redution of variables for this instane.

After the redution of the modes a feasible mode assignment was done with the re-

maining modes of the instanes. Using the MIP-based proedure presented in Gerhards et

al. (in print) a feasible mode assignment was found for eah instane. Thus, the deletion

of non-optimal modes does not lead to infeasibility.

To emphasize the impat of the pre-proessing proedure a MIP implementation of

the mathematial model of Talbot (1982) was tested. IBM ILOG CPLEX 12.6.3 was used

as the mathematial solver. The experiments were done for all instanes with a maximal

running time of 30 minutes per instane. The time horizon T of the model was omputed

as the sum of the maximal duration of eah ativity. All ESi and LSi (based on T ) values
were omputed using CPM.

Table 2. Improved best known solutions

MMLIB50 MMLIB100 MMLIB+

MIP (Talbot (1982)) 2 2 9

MIP (Talbot (1982)) with pre-proessing 2 2 23
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Table 2 summarizes the number of improved best known solutions. In the �rst run

the MIP was started without any further pre-proessing. Although the MIP was not able

to �nd a feasible solution for eah instane, it improves the best known solutions of 13

instanes. In the seond run, the presented pre-proessing proedure was used. This led

to an additional improvement of the best known solutions for 27 instanes. This indiates

the e�etiveness of the proedure. Due to a smaller number of variables the MIP is able to

improve its solution quality. A more detailed overview of these experiments will be given

during the presentation at the onferene. All improvements are reported to the database

www.mmlib.eu.

5 Conlusions

This work presents a pre-proessing proedure for the MRCPSP whih is based on

a known makespan of a feasible solution. The omputational experiments show that the

proedure an be integrated into a solution approah and has a very short omputation

time. A mode redution is possible for 2,026 of the 4,320 MMLIB instanes.

To test the e�etiveness of the proedure a MIP implementation of the mathematial

model of Talbot (1982) was used. The �rst run did not use the pre-proessing proedure.

Applying the pre-proessing tehnique in the seond run before starting the MIP lead to an

improvement of the best known solutions for 27 instanes. Thus, the presented tehnique

improves the solution approah. A more detailed investigation of the instanes ontaining

non-optimal modes as well as a more detailed explanation of the omputational experiments

will be presented at the onferene.
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1 Problem statement and literature review

In this paper we revisit a well-known just-in-time scheduling problem under the light
of exponential-time algorithms. We are given a set of n jobs, each job i being de�ned by a
processing time pi and a weight wi, the latter re�ecting the penalty induced by scheduling
it early or tardy. All jobs share the same, non restrictive, common due date d ≥

∑
i pi.

The objective is to �nd a schedule s of jobs such that
∑
i wi(Ei(s) + Ti(s)) is minimized,

with Ti(s) = max(Ci(s)− d; 0) and Ei(s) = max(d− Ci(s); 0). Notice that the mention of
schedule s may be omitted whenever there is no ambiguity. Following the standard three-
�elds notation, this problem can be referred to as 1|di = d ≥

∑
i pi|

∑
i wi(Ei + Ti).

This problem has been shown to be NP-hard by Hall and Posner (1991) and a com-
prehensive survey of related problems can be found in (T'kindt and Billaut 2006) and
(Jozefowska 2007). Interestingly, several remarkable properties, summarized in Property
1, have been established along the years on that problem. They notably induce that the
hardness of the problem comes from deciding for each job if it is better to schedule it early
or tardy.

Property 1. There exists optimal solutions to the 1|di = d ≥
∑
i pi|

∑
i wi(Ei+Ti) problem

satisfying:

1. there are no machine idle times between two consecutive jobs,
2. the �rst scheduled job can start at a time greater than 0,
3. there exists a job which exactly completes at time d,
4. the class of V-shape schedules is dominant, i.e. all early jobs are sequenced by decreas-

ing value of the ratio pi
wi

(WLPT rule) while all tardy jobs are sequenced by increasing
value of the ratio pi

wi
(WSPT rule).

Several exact algorithms have been proposed to solve it but with the focus of proposing
e�cient algorithms on randomly generated instances. In this work, we focus on a more
theoretical approach which consists in designing exact algorithms for which a �good be-
haviour� in the worst-case is sought. This relates to the area of exponential-time algorithms
and the reader is referred to the book of Fomin and Kratsch (2010) for a good introduction.
When dealing with worst-case complexities of exponential algorithms, we usually make use
of the O∗() notation: let T (·) be a superpolynomial and p(·) be a polynomial, both on the
instance size (usually the number of jobs n for scheduling). Then, we express running-time
bounds of the form O(p(n) · T (n))) as O∗(T (n)). With respect to scheduling literature,
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Lenté et. al. (2014) proposed an introduction and a �rst review of existing exponential
algorithms. Additional works have been published by Cygan et. al. (2011), Lenté et. al.

(2013), Garra�a et. al. (2017), Shang et. al. (2017a) and Shang et. al. (2017b). For the
1|di = d ≥

∑
i pi|

∑
i wi(Ei + Ti) problem it is clear that its optimal solution can be com-

puted by means of a brute-force algorithm which enumerates all possible assignments of
jobs to the sets of early and tardy jobs. Then, each set can be sorted in polynomial time by
means of either WSPT or WLPT rules: the last early job then completes at time d while
the �rst tardy jobs starts at time d. This algorithm requires O∗(2n) time and polynomial
space in the worst-case. Consequently, it becomes of interest to search for an exact algo-
rithm that would be of a lower worst-case time complexity. We show in the next section
that it is possible to solve the 1|di = d ≥

∑
i pi|

∑
i wi(Ei + Ti) problem in O∗(2n

2 ) time
and space.

2 A Sort & Search algorithm

Among the known techniques to derive exponential-time algorithms (Fomin and Kratsch
2010), there is Sort & Search initially proposed by Horowitz and Sahni (1974) to solve the
knapsack problem in O∗(2

n
2 ) time and space. Later on, this method has been extended

to solve multiple constraints problems by Lenté et. al. (2013) who also applied it to a set
of scheduling problems. Roughly speaking, it consists in separating an input instance into
two equal-size instances, then in enumerating all partial solutions for each sub-instance
and then �nd the optimal solution of the input instance by recombining in a suitable way
all those partial solutions taking each time one from each sub-instance. This �complexity
breaking� is done at the detriment of the space complexity which turns to be exponential.

Without loss of generality, assume that n is even and that jobs are indexed such that
p1
w1
≤ p2

w2
≤ . . . ≤ pn

wn
. In the remainder we implicitly make use of the results in Prop-

erty 1 to elaborate our Sort & Search algorithm. For any given instance I of n jobs,
let be I1 = {1, . . . , n2 } and I2 = {n2 + 1, . . . , n} a decomposition into two equal-size sub-

instances. By enumeration, done inO∗(2n
2 ) time, we can build set S1 = {s1j/j = 1, . . . , 2|I1|}

(resp. S2 = {s2k/k = 1, . . . , 2|I2|}) which is the set of all possible solutions built from sub-
instance I1 (resp. I2). We have |S1| = |S2| = 2

n
2 . Figure 1 shows, for an instance I, a

complete schedule s = s1j//s
2
k decomposed into two partial solutions s1j = {ε1j ; τ1j } ∈ S1

and s2k = {ε2k; τ2k} ∈ S2, with εyx (resp. τyx ) referring to a schedule of early jobs (resp. tardy

jobs). Besides, tbj refers to the completion time of the last job in ε2k while tfj refers to the

starting time of the �rst job in τ2k .

d

τ1jε1j

tbj tfj

ε2k τ2k

Fig. 1. Decomposition of a complete schedule into two sub-schedules s1j and s2k

We can show the following result.

Proposition 1. Let s = s1j//s
2
k be a complete schedule, and let fjk =

∑
i∈s wi(Ei(s) +

Ti(s)) be the value of the objective function for schedule s. We have:
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fjk = fj + ck + akt
b
j,

with fj =
∑
i∈s1j

wi(Ei(s
1
j ) + Ti(s

1
j )), ck =

∑
i∈s2k

wi(Ei(s
2
k) + Ti(s

2
k)) + d(

∑
i∈ε2k

wi −∑
i∈τ2

k
wi) +

∑
i∈τ2

k
wi

∑
i∈I1 pi, and ak =

∑
i∈τ2

k
wi −

∑
i∈ε2k

wi. Notice that fj and tbj are

only dependent on s1j , while ck and ak are only dependent on s2k.

For any s1j partial schedule fj and tbj can be computed in O(n) time, which is also

the case for ck and ak whenever partial schedule s2k is given. In the remainder we assume
that these values are computed when building sets S1 and S2 which does not a�ect the
O∗(2n

2 ) time complexity required by the Sort & Search algorithm to build these sets. This
algorithm then proceeds by sorting set S1 in O∗(2n

2 ) time, so that for any s1j and s
1
j+1 we

have tbj ≤ tbj+1. For a given partial schedule s1j ∈ S1, starting from j = 1 to j = |S1|, the
algorithm needs to �nd a schedule s2k ∈ S2 such that fjk is minimum. The optimal solution
associated to instance I is then given as the best complete solution obtained. Now, let us
turn to the search of the best schedule s2k when s1j is �xed.

We separate set S2 into sub-sets S+2 = {s2k ∈ S2/ak ≥ 0} and S−2 = {s2k ∈ S2/ak < 0} and
the search for the best partial schedule s2k complementing s1j is done �rst in S

+
2 and next in

S−2 . In this abstract, we only detail how the search in S+2 can be done in O∗(2n
2 ) time and

we claim that the same result holds for searching in S−2 . Before doing the search in S
+
2 when

s1j is �xed, an extra preprocessing on S+2 is done. We know that the lowest possible value

of tbj is equal to (d−
∑
i∈I1 pi), so let partial sequences s

2
k ∈ S

+
2 be re-indexed by increasing

values of αk = (ck+ak(d−
∑
i∈I1 pi)) =

∑
i∈s2k

wi(Ei(s
2
k)+Ti(s

2
k))+

∑
i∈ε2k

wi
∑
i∈I1 pi. We

also remove all s2k such that αk ≥ αk−1 and ak ≥ ak−1. This can be done, independently
from s1j , in O∗(2

n
2 ) time. By the way, all contributions (fjk − fj) of s2k ∈ S

+
2 depend on

tbj as pictured in Figure 2. By a dedicated algorithm (not presented here) it is possible to

compute couples (T`, s
2
k`
) in O∗(2n

2 ) time, with the meaning that whenever tbj ∈ [T`;T`+1[,

partial schedule s2k` leads to the complete schedule s = s1j//s
2
k`

with minimum cost. In

the worst-case scenario there are O(2n
2 ) couples, but in practice there can be less couples,

depending on the ck's and the ak's. Searching in S+2 is then equivalent to search in a list
of couples (T`, s

2
k`
) which is assumed to be sorted by increasing values of T`. The search in

this list can be done, for a given s1j ∈ S1, can be done in O(log(|S+2 |)) = O(n) time. Then,

�nding the best partial schedule s2k complementing s1j , in sets S+2 and S−2 , can be done in
O(n) time.

As for each s1j ∈ S1 a search step in O(n) time has to be done, we reach a total time

complexity in O∗(2n
2 ) for �nding the optimal solution of the instance I whenever all sets

S1, S+2 and S−2 have been built. This data processing requires a total of O∗(2n
2 ) time,

leading by the way to a Sort & Search algorithm with O∗(2n
2 ) time and space worst-case

complexities.

3 Future directions

In this abstract we have shown how to build an exponential time algorithm for the
1|di = d ≥

∑
i pi|

∑
i wi(Ei+Ti) problem, running in O∗(2n

2 ) ≈ O∗(1.41n) time and space
in the worst case. This algorithm is based on the Sort & Search method which works by
appropriate data processing and sorting procedures. Interestingly, the sorting procedure
is elaborated on partial sequence starting times which is, �nally, not surprising since tim-
ing problems play a central role in just-in-time scheduling. Besides, this is the �rst result
known for such problems.
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Fig. 2. Contributions of partial schedules s2k ∈ S+
2

Notice that in the presence of non symmetric weights, Proposition 1 can be slightly mod-
i�ed which enables to adapt the proposed algorithm for the 1|di = d ≥

∑
i pi|

∑
i wiEi+viTi

problem. Besides, the proposed algorithm suggests also the existence of a Sort & Search

algorithm for the problem but with identical parallel machines, denoted by P |di = d ≥∑
i pi|

∑
i wiEi + viTi.
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1 Introduction

It is well known that a lot of scheduling problems have a huge number of optimal solu-
tions. This is particularly true for some polynomial problems such as 1||Lmax, 1|rj |Cmax,
F2||Cmax, etc. (Smith, W.E. et. al. 1956). The purpose of this paper is to contribute to
the characterization of all the optimal solutions of such a polynomial scheduling problem.

A general framework to characterize the set of optimal solutions has been proposed in
(Billaut, J-C. et. al. 2011b) and (Billaut, J-C. et. al. 2012), based on the properties of the
lattice of permutations (also called permutohedron). We consider in this paper the single
machine scheduling problem with maximum lateness minimization, denoted by 1||Lmax

(Jackson, J-R. et. al. 1955). We assume that a pre-treatment in O(n log n) is performed
so that the jobs are numbered in EDD order and due dates are modi�ed into deadlines so
that any optimal sequence has to be feasible with respect to these deadlines.

In the framework based on the lattice, one problem is to �nd a feasible sequence, as
deep as possible. Indeed, any feasible sequence in the lattice is such that all its predecessors
are also feasible (simple pairwise exchange argument) and it is possible to give easily the
characteristics of all these predecessors. To denote the level of a feasible sequence in the
lattice, a new function has been introduced and we want this level to be as small as possible.
Let remember (see (Billaut, J-C. et. al. 2012)) that the top sequence is EDD with level
1
2n(n − 1) and the bottom sequence is the inverse EDD sequence with level 0. Typically,
if the inverse EDD sequence is feasible, it means that all the predecessors, i.e.e the n!
sequences, are feasible.

The new objective function denoted by
∑
Nj has led to the introduction of some other

new objective functions, based on the position of the jobs in the sequence, which have been
studied in (Ta, T.T.Tien et. al. 2017a) and (Ta, T.T.Tien et. al. 2017b).

2 De�nition of function
∑

Nj and �rst results

We consider a set of n jobs to schedule. To each job Jj , 1 ≤ j ≤ n, is associated

a processing time pj and a deadline d̃j . Without loss of generality, it is assumed that

d̃1 ≤ d̃2 ≤ ... ≤ d̃n and that sequence EDD = (J1, J2, ..., Jn) is feasible.

Let σ be a sequence. The level of σ in the lattice is the number of couples (Jj , Jk) so
that j < k and Jj precedes Jk. Therefore, the contribution of Jj to this objective function
is the number of jobs after Jj with an index greater than j. We denote this number by Nj .

Let suppose that xj,k is a binary variable equal to 1 if Jj is in position k. We have:
Nj =

∑n
i=j+1

∑n
h=k+1 xi,h.

This objective function has other denominations in the litterature: the Kendall's tau
distance (counts the number of pairwise disagreements between two ranking lists) and the
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crossing number between the considered sequence and the inverse numbering sequence.
Notice that a problem, presenting similarities with our problem, is proved NP-hard in
(Biedl, T. et. al. 2005).

We can notice that this objective function does not depend on the jobs completion
times, which is unusual in scheduling. This remark leads to some �rst (simple) results.
• Problem 1||

∑
Nj

Problem 1||
∑
Nj (without due date or deadlines) is trivial. Scheduling the jobs in the

reverse order of their numbering leads to a solution with
∑
Nj = 0.

• Problem 1|pj = p, d̃j |
∑
Nj

Let consider �rst the 1|pj = 1, d̃j |
∑
Nj problem and consider the following Backward

algorithm (Alg. 1): schedule starting by the end the feasible job with minimum index. This

algorithm solves problem 1|pj = 1, d̃j |
∑
Nj to optimality (the proof is admitted here).

It is easy to see that this algorithm can also solve problem 1|pj = p, d̃j |
∑
Nj .

3 Properties and resolution methods for 1|d̃j|
∑

Nj

Property 1: An optimal solution can always be decomposed in a succession of batches
de�ned as follows: the "head" of the batch is the last job of the batch ; the jobs in the batch
are in decreasing numbering order and have an index greater than the head. Therefore, the
index of the heads are increasing, starting with index 1.

Proof. admitted.

Exact resolution methods

For exact resolution, two MILP models were presented in (Billaut, J-C. et. al. 2012).
The �rst model uses positional variables, the second model uses relative position variables.

In this paper, a branch-and-bound algorithm is proposed with some dominance rules.
The B&B method for

∑
Nj has the following characteristics. A node is de�ned by a

partial sequence S of k jobs starting by the end of the schedule, a set of n− k unscheduled
jobs S̄, a lower bound LB(S), the index idx of the head of the current batch and t the
starting time of the jobs in S: t =

∑
Jj∈S̄ pj .

At the root node, the unscheduled jobs are {Jn, Jn−1, ..., J1}. The initial upper bound
UB is given by a Backward algorithm of the same type as Alg. 1. The strategy of branching
consists in adding a job of S̄ in �rst position of S, respecting the deadlines, and the
exploration is done by depth− first (the list of nodes is managed as a LIFO list).

Some dominance rules are used for this method. Let consider a current node and let
us denote by J` the �rst job in S and by Jh the job in S̄ to schedule before J`. The child
node is created only if d̃h ≥ t. Furthermore, if h < ` and h > idx, the node is not created
(see Property 1). If h < ` and h < idx, the idx of the child node is set to h. If h = 1, the
sequence is completed by the jobs in S̄ in their inverse numbering order and this node is
considered immediately as a leaf of the tree (see Property 1).

The lower bound works as follows: a dummy sequence is built with the jobs in S̄ in
reverse number ordering, plus the jobs in S. The evaluation of this a priori non feasible
sequence is the lower bound. However, if the set of unscheduled jobs is (Jn, Jn−1, ..., J1) in
this order, it is possible to compute the lower bound in O(1) time.

Heuristic and metaheuristic methods

Two polynomial time heuristic methods are proposed: a Backward algorithm (denoted
BW , Alg. 1) and a Forward algorithm (denoted FW ). BW builds a solution by the end,
putting in last position the feasible job with the smallest index; FW takes the jobs in EDD
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order, put each job as late as possible and insert the feasible job with the biggest index
before it.

Two metaheuristic methods are proposed: a Tabu search (denoted TS) and a Simulated
Annealing (SA), with several (common) neighborhoods operators. The initial solution of
TS and SA is the best solution of BW and FW .

4 Computational experiments

After a study about a related problem based on jobs positions, which was proved to be
strongly NP-hard ((Ta T.T.Tien, et. al. 2017a), (Ta, T.T.Tien, et. al. 2017b)), two types
of instances were generated. One type of pure random instances, and one type of "di�cult"
instances. Even if the problems are not the same, we kept these data for our computational
experiments.

Data sets For each type of instance, 30 instances have been generated for each value of
n, with n ∈ {10, 20, ..., 100}.
• For the instances of type I, random data sets have been generated as follows: pj ∈

[1, 100], wj ∈ [1, 100] , dj ∈ [(α − β/2)P, (α + β/2)P ], with P =
∑
pj , α = 0.75 and

β = 0.25.
These instances receive a pre-treatment: (1) EDD rule is applied, giving L∗max. Then,

(2) due dates are modi�ed to give deadlines: d̃j = dj + L∗max, for any j ∈ {1, 2, ..., n},
limiting the deadlines to

∑
pj . Finally, (3) the jobs are renumbered in EDD order.

• For the instances of type II, random data sets have been generated as follows:
For n′ = bn/4c jobs: pj = 1; wj = 0; d̃j = 4jP/n
For the (n − n′) remaining jobs: pj ∈ [1, 100], wj = w0j + P , with w0j ∈ [1, 100] and

P =
∑
pj ; d̃j = P + bn/4c

These instances do not need the pre-treatment.

Results The computational experiments have been run on a HP ProBook, Intel(R)
Core(TM) i5-6300 CPU @ 2.40GHz 2.50 GHz, RAM 16,0Go, System style 64 bit. The
MILP models have been solved by IBM ILOG CPLEX 12.6. The CPU time to solve each
instance has been limited to 180 seconds for all the resolution methods. Results for in-
stances of type I and II are presented in Table 1. Columns MILP1, MILP2 and B&B con-
cern the exact methods, 'cpu' indicates the average computation time and 'opt' indicates
the number of instances solved to optimality in less than 180 seconds. The other columns
concern the heuristic methods. Columns 'N◦B' indicate the number of times the method
is the best among all the methods, and ∆B1 is a relative deviation de�ned by: MIN =
min(MIP1,MIP2, B&B,BW,FW ) and ∆B1(H) = H−MIN

H ,∀H ∈ {BW,FW, TS, SA}
For Type I instances, one can see that MIP1 is better than MIP2 for small instances,

but B&B is the best exact method, solving quite all instances up to 70 jobs. With 90 jobs
the B&B remains interesting but for larger instances, the best method is the Simulated
Annealing algorithm. For Type II instances, one can see that the exact methods are limited
to instances with up to 20 jobs. Among the heuristic algorithms, BW is the best method
and the Tabu Search and the Simulated Annealing are not able, in the limited computation
time of 180 seconds, to improve the initial solution.
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Table 1. Results of Type I & II instances

MIP1 MIP2 B&B BW FW TS SA
n cpu opt cpu opt cpu opt N◦B ∆B1 N◦B ∆B1 N◦B ∆B1 N◦B ∆B1

(s) (s) (s) (%) (%) (%) (%)

Results of Type I instances

10 0,26 30 0,27 30 3.10−5 30 22 2,00 28 0,43 30 0 30 0
20 47,2 30 105 20 4.10−4 30 5 15,36 13 4,21 26 0,36 20 0,65
30 180 0 180 0 5.10−3 30 1 20,66 5 6,50 13 2,39 11 1,03
40 180 0 180 0 0,014 30 0 24,09 1 8,23 13 4,04 7 1,55
50 180 0 180 0 0,077 30 0 28,92 0 7,44 5 3,68 0 1,72
60 180 0 180 0 2,391 30 0 28,90 0 7,11 10 2,42 0 1,28
70 180 0 180 0 23,79 29 0 28,49 0 7,64 3 3,59 1 1,37
80 180 0 180 0 127,3 15 0 31,33 0 7,07 7 2,90 7 0,44
90 180 0 180 0 174,5 1 0 25,85 0 1,76 14 -2,42 13 -3,30
100 180 0 180 0 180 0 0 28,79 0 0,30 12 -1,62 19 -3,10

Results of Type II instances

10 0,001 30 0,1 30 2.10−3 30 28 0,58 6 13,39 30 0 30 0
20 0.504 30 111 20 33,21 29 30 0 0 26,14 30 0 30 0

30..100 180 0 180 0 180 0 30 0 0 '27% 30 0 30 0

5 Conclusions and Perspectives

In this paper, we have identi�ed a new category of scheduling problems, with the
de�nition of a new objective function. Some trivial problems are identi�ed but the general
problem with deadlines remains open. We propose some exact and exponential methods,
as well as heuristic and meta-heuristic algorithms. These methods are evaluated by some
computational experiments on randomly generated instances. In the future, we will continue
to improve the exact methods by introducing cuts and more dominance conditions, but
the most important point is to investigate the complexity of the general problem.
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1 Introduction and Problem Description

Batch scheduling problems arise in many industries, such as semiconductor manufac-
turing, aircraft manufacturing, steel casting, transportation, material handling, packaging,
and storage systems. A batch is defined as a group of jobs that can be processed jointly
(Brucker et al. (1998)). Batch scheduling problems are a combination of assignment and se-
quencing problems. The two main decisions are: Forming batches (assigning jobs to batches)
and scheduling the batches on the machines.

This work is motivated by semiconductor manufacturing. Our goal is to optimize
scheduling decisions in the diffusion area which is a complex and critical part of front-
end processing in semiconductor manufacturing (eg. Mehta and Uzsoy (1998); Mathirajan
and Sivakumar (2006); Mönch et al. (2012)). The processes in this area are performed
on two types of equipment: Cleaning machines and furnaces (Yugma et al. (2012)).These
machines can process several lots simultaneously. Moreover, the processing durations can
be very long compared to other operations in a front-end semiconductor manufacturing
facility (fab).

As a starting point, we adopt the novel approach recently proposed by Knopp et al.
(2017) for complex job-shop scheduling problems with batching machines. In this approach,
an adaptation of the classical conjunctive graph is introduced to model batches through
arc labels. Using this new representation, called batch-oblivious graph, schedules are con-
structed and improved during the graph traversal. As this representation does not differ
from the conjunctive graph representation for the flexible job-shop scheduling problem, it
is possible to directly apply the move proposed in Dauzère-Pérès and Paulli (1997) which
integrates the resequencing and reassignment of operations. However, the batch-oblivious
approach in Knopp et al. (2017) considers all operations as candidates for the move while
in Dauzère-Pérès and Paulli (1997) only critical operations are considered.

The contribution of this work is to improve the efficiency of the batch-oblivious ap-
proach when it is dealing with scheduling problems on parallel batch processing machines.
Within the context of a neighborhood-based heuristic, which is the case of the batch-
oblivious approach, the efficiency can be reached by reducing the size of the neighborhood,
i.e. by reducing the set of candidate operations to move. After bringing out that the origi-
nal batch-oblivious graph lacks fundamental properties that underlie efficient neighborhood
structures for scheduling problems without batching, a new construction algorithm is pro-
posed to remedy this. Using this new algorithm, we propose two efficient neighborhood
functions that improve the results obtained by the original batch-oblivious approach.
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We consider n jobs that arrive dynamically and have to be processed on m identical
parallel machines. The maximum batch size of each machine is B jobs. The jobs belong to
F incompatible families. Only jobs of the same family can be processed together in a batch
due to the chemical nature of the processes. All jobs of family f have the same processing
time pf . Job j has a family denoted by f(j) and a release date denoted by rj . We are
interested in minimizing the makespan Cmax. Using the (α|β|γ) notation of Graham et al.
(1979), the scheduling problem can be denoted by: P |p − batch, incompatible, rj |Cmax.

2 Batch Oblivious Approach

Existing disjunctive graph approaches for scheduling problems with batching rely on
the introduction of dedicated nodes and arcs to explicitly represent batches. To facili-
tate modifications of the graph, the batch-oblivious approach reduces this complexity by
encoding batching decisions into edge weights and keep unchanged the structure of the orig-
inal graph. Using this new representation, an original construction algorithm that takes
batching decisions and improves the schedules on the fly is proposed. As it computes the
processing start dates of the operations while it traverses the graph in the topological or-
der, the proposed construction algorithm changes dynamically the graph in order to fill
up the underutilized batches by bringing backward suitable nodes. This algorithm is com-
plemented by the integrated move of Dauzère-Pérès and Paulli (1997) to resequence and
reassign operations. This combination yields a rich neighborhood that is applied within a
Simulated Annealing (SA) metaheuristic. The latter is embedded in a Greedy Randomized
Adaptive Search Procedure (GRASP).

3 New Construction Algorithm

While we adopt most of the batch-oblivious approach, we propose a new construction
algorithm. In the original algorithm, the graph is traversed in topological order to compute
the processing start dates and constitute batches. If a batch is incomplete, the algorithm
searches for a node of a compatible job that can complete the batch among the set of nodes
that have not been yet assigned a processing start date. If such compatible job is found, it
is required to be available before the already decided start date of the incomplete batch.
If it is the case, the job is moved and inserted at the end of the batch sequence.

The study of the resulting graph shows it lacks a fundamental property of efficient
neighborhood functions (Van Laarhoven et al. (1992)): The removal of an operation from
a machine sequence cannot increase start times. It is easier to construct an example of a
batch-oblivious graph when the removal of an operation degrades the solution. The new
construction algorithm proposed in this work then modifies the graph in a way that deleting
an operation cannot increase start times. This algorithm uses Property 1.

Property 1. If all batch operations are sequenced in the non-increasing order of the job
release dates, no operation deletion can degrade the solution quality.

So, instead of inserting an operation at the end of the batch sequence, it will be inserted
in the position that leads to the satisfaction of the condition in Property 1. Note that
the new construction algorithm leads to the same solution and only changes the solution
representation.

4 New Neighborhood Functions

The new algorithm thus uses a solution representation where removing an operation
does not increase start times. This leads to the direct use of the classical move where
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only critical operations are candidates. This restriction to critical operations is justified
by Property 2. This new neighborhood function can quickly lead to a good solution as it
discards uninteresting moves and only focuses on promising ones.

Property 2. If a move of a non-critical operation can improve the solution, there is always
a move of a critical operation that leads to a solution with the same or a better quality.

Based on the same solution representation, the size of the neighborhood of a solution
that can be reached through the move of critical operations can also be reduced. This
additional reduction uses Property 3. Before stating the property, two types of operation
are given in Definition 1 and Definition 2. This classification is based on the position of an
operation in the sequence of its batch.

Definition 1 (First Batched Operation). It is a first operation in a batch sequence in
the batch oblivious conjunctive graph representation.

Definition 2 (Internal Batched Operation). It is an operation in a batch which is not
the First Batched Operation.

Property 3. If a move of a critical Internal Batched Operation can improve the solution,
there is always a move of a critical First Batched Operation that leads to a solution with
the same or a better quality.

As the constructed solutions respect the condition in Property 1, the first operation in
the batch sequence is in fact the last available among all the operations belonging to the
batch. Property 3 then helps reducing the candidate set of operations to move to those
that are critical and the last available in their batch.

5 Computational Results

To assess the efficiency of the two proposed neighborhood functions, the instances of
Mönch et al. (2005) are used, except that the makespan is considered instead of the total
weighted tardiness. Three implementations are compared:

1. (OI): Original implementation of Knopp et al. (2017).
2. (NC): The construction algorithm is modified so that Property 1 is satisfied. Moreover,

only critical operations are moved instead of any operation.
3. (NCB): Similar to (NC), except that only critical first batched operations are consid-

ered instead of any critical operation.

Table 1 shows the results of the three implementations on the 160 instances using the
same experimentation parameters. Table 1 shows that the ideas presented in this work
improve the performance of the original batch-oblivious approach. For example, (NCB)
obtains the best solution for 70% of the instances while the original approach finds the
best solution for 43%. The dominance of (NC) and (NCB) over (OI) can also be observed
when analyzing the average gap (AverageGap) and the maximum gap (MaxGap) to the
best solution. When comparing (NC) and (NCB), even if the improvement is not significant,
the interest of improving the local search efficiency is confirmed.
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Table 1. Results for instances of Mönch et al. (2005) with makespan objective

Implementation % Found Best AverageGap MaxGap
(OI) 43 % 0.83 % 6.27 %

(NC) 65 % 0.24 % 3.00 %
(NCB) 70 % 0.20 % 3.00 %

6 Conclusion

In this work, we study the scheduling problem of minimizing makespan on parallel
identical batching machines with dynamic job arrivals and incompatible families. Based
on the batch-oblivious approach presented in Knopp et al. (2017), two new neighborhood
functions are proposed. These two functions improve the search performance by reducing
the size of the neighborhood to explore. Numerical experiments on academic instances
show that the local search efficiency is improved. An important perspective of this work is
to extend the analysis to the case where routing precedence constraints are considered.
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1 Introduction

Scheduling problems are highly diverse though the principal objective of them is similar,
which is satisfying the orders while utilizing the scarce resources as efficiently as possible.
However, as the firms operating on a make-to-order basis, satisfaction of the entire demand
may not be possible due the capacity limitations and tight delivery time requirements faced
by the firm. This necessitates selecting only part of customer orders to maximize the total
revenue, which gives rise to the order acceptance and scheduling (OAS) problems. We
consider a make-to-order production system, where limited production capacity and order
delivery requirements necessitate selective acceptance of the orders. It is often assumed that
each order is delivered individually (i.e. immediately after their completion). However,
orders may be sent in batches to decrease the transportation cost. Therefore, batching
decisions along with order acceptance and scheduling decisions should be considered. Since
batching decisions directly affect the tardiness, all decisions should be taken jointly. Herein,
we study the problem called as the order acceptance and scheduling problems with batching
(OASB) and present an iterated local search algorithm (ILS) to solve it.

2 Literature review

Charnsirisakskul et. al. (2004) define an order acceptance problem in which the cus-
tomer does not place an order if the manufacturer cannot complete the order by the latest
acceptable due date. Oguz et. al. (2010) study a different version of the problem where
sequence dependent setup times and release times are included. They develop a simulated
annealing based heuristic and two constructive heuristics. Cesaret et. al. (2012) propose
a tabu search algorithm for the same problem that improves the best solution of many
test instances. Chaurasia and Singh (2016) develop two hybrid metaheuristic approaches,
a hybrid steady-state genetic algorithm and a hybrid evolutionary algorithm and improved
the best solutions further.

The timing issue and package delivery is determined first by Cheng and Kahlbacher
(1993). Although there have been studies regarding batch delivery in the following years
such as Potts and Kovalyov (2000), Hall and Potts (2005) and Cakici et. al. (2014), batch
delivery in the OAS problem is addressed for the first time by Khalili et. al. (2016). Authors
propose an imperialist competitive algorithm for which the gap between the best solution
found by CPLEX solver in 3600s and the solution found by the proposed algorithm can be
up to 150%. Computational results of this study show that better solution methodologies
can be developed for this problem.
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3 Problem definition

In a single machine environment, we are given a set of independent orders O at the
beginning of the planning period. For each order i ∈ O, we have data on its customer
qi, qi ∈ Q, its release time ri, processing time pi, due date di, deadline d̄i such that
di ≤ d̄i, sequence dependent setup times where each element sti,j is the time that has to
be incurred before order j is processed, if order i immediately precedes order j , revenue ei
which denotes the maximum gain from order i, and unit tardiness penalty cost wi. Orders
are delivered in batches to the customers (it is assumed that there are infinite number of
uncapacitated vehicles for delivery). Each batch can only contain the orders belonging to
a single customer and it can be delivered only if all orders in that batch are completed.
Therefore, the delivery time of an order i, deli, is the completion time of the latest order in
batch ki, ki ∈ K, that includes order i, c̄ki ; deli = c̄ki and c̄ki = maxj:kj=ki cj where cj is
the completion time of order j. The manufacturer may deliver order i until its deadline d̄i,
but for each time unit beyond its due date, she incurs a tardiness penalty cost. Accordingly,
tardiness of order i, Ti is equal to max{0, deli − di}.

Given a sequence σs of the selected orders S ⊆ O and the number of batches nb
(in another sense, deliveries) of corresponding sequence, revenue generated from order i,
denoted by Ri(σs), is calculated as Ri(σs) = max{0, ei − Tiwi}. Consequently, the total
revenue gained from processing orders in S in sequence σs is TR(σs) =

∑
i∈S Ri(σs) and

net revenue is TR− nbf where f is the fixed cost of a delivery. Hence the OASB problem
is to find the set S, the sequence σs and its batching configuration so that the net revenue
is maximized. We are not presenting the corresponding MILP here due to page limitation.
In a nutshell, MILP consists of three groups of constraints regarding i) sequence of orders,
ii) batch configuration of orders and iii) computation of tardiness, completion and delivery
times.

An extensive set of test instances with 10, 15, 25 and 50 orders is solved by CPLEX
using the MILP formulation. Results show that MILP can handle all instances with 10
orders and some instances with 15 orders. However, none of the instances with 25 and 50
orders can be solved to optimality by MILP in one hour. Therefore, we propose an iterated
search algorithm that is capable of solving the majority of the instances with 10 orders to
optimality and for the instances with higher number of orders, providing better solutions
than CPLEX in much shorter time.

4 Proposed metaheuristic algorithm

The general steps of the proposed metaheuristic algorithm ILS are given in Algorithm 1.
Solution x is encoded as a sequence including all orders. The proposed algorithm is founded
on two types of neighborhoods: Swap and Insertion. Swap neighborhood of a solution x
includes all solutions that can be obtained by swapping any two orders of it. Insertion
neighborhood of a solution x includes all solutions that can be obtained by shifting a single
order or consecutive two orders in the schedule of solution x. In the OASB problem, even
though the corresponding neighborhoods may not include a solution that is better than
the incumbent solution, they are likely to include a solution having the same objective
value with the incumbent solution. Thus, it is promising to employ moves, which have the
same objective value as the incumbent solution, simultaneously. To this end, SwapXSwap,
SwapXInsertion and InsertionXInsertion neighborhoods include all solutions generated
by simultaneously employing promising two swap moves, swap and insertion move, and two
insertion moves, respectively. For each neighborhood defined, there is a function returning
the best solution in the corresponding neighborhood and they are employed in variable
neighborhood search manner.
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If the best solution cannot be improved through these moves, Perturbation(x∗) is called
to perturb the best solution. Perturbation(x∗) is performed by first dividing solution x∗
into a set of blocks and then resequencing these blocks. The first part, that is dividing
solution x∗ into a set of unconnected blocks of orders, is realized by ejecting a set of orders
chosen randomly. The second part, that is forming solution x again, is accomplished by
obtaining the optimal sequence of these blocks via a dynamic programming algorithm. To
avoid cycling, that is to ensure that the perturbed solution is different from x∗, the ejected
orders are not allowed to be appended to the end of blocks that precede them in solution
x∗.

The algorithm returns to Step 1 after the perturbation and terminates after a certain
number of perturbations.

Algorithm 1 Pseudocode of the proposed algorithm
Input: Current solution x, Objective value of x is f(x), best solution x∗, perturbation number
p = 0, maximum number of perturbations maxp

Update_best_solution(x′) {x← x′, x∗ ← x′, go to line 2}
1: while p < maxp do
2: x′ := Swap(x)
3: if f(x′) > f(x) then Update_best_solution(x′) end if
4: x′ := Insertion(x)
5: if f(x′) > f(x) then Update_best_solution(x′) end if
6: x′ := SwapXSwap(x)
7: if f(x′) > f(x) then Update_best_solution(x′) end if
8: x′ := SwapXInsertion(x)
9: if f(x′) > f(x) then Update_best_solution(x′) end if
10: x′ := InsertionXInsertion(x)
11: if f(x′) > f(x) then Update_best_solution(x′) end if
12: x := Perturbation(x∗)
13: p++
14: end while

5 Computational results

The proposed algorithm ILS is coded in C++ and the MILP model of the OASB
problem is solved by CPLEX 12.5.1 for comparison purposes. All computations are executed
in an Intel Core i7 with 2.60 GHz and 8 GB of RAM running Windows 7. The proposed
algorithm is tested with the benchmark instances suggested in Cesaret et. al. (2012). Test-
problems have four different sizes (number of orders), more specifically, n = 10, 15, 25 and
50. Two additional parameters are used to create instances with varying characteristics,
namely τ and R. The first is a tardiness factor, while the second is a due date range; both
parameters were chosen from 3 possible values: 0.1, 0.5 and 0.9. For each combination of
these parameters, ten instances are solved and average results are provided in Table 1.

CPLEX is set to terminate in at most one hour and under this limitation, it is unable
to provide tight upper bounds when the the number of orders is higher than 10. Thus, the
optimality gap of the proposed algorithm seems high. However, it outperforms CPLEX in
terms of both solution quality and time when n is larger than 10. While CPLEX could
solve all instances with 10 orders to the optimality, the proposed algorithm can solve the
majority of these instances to the optimality in much shorter time.
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n R τ Optimality gap (%) Solution time (s)

CPLEX ILS CPLEX ILS
10 0,1 0,1 0,00 0,00 563,73 0,03

0,5 0,00 0,14 158,72 0,02
0,9 0,00 0,00 1,05 0,01

0,5 0,1 0,00 0,22 882,63 0,03
0,5 0,00 0,00 145,61 0,02
0,9 0,00 0,68 2,50 0,01

0,9 0,1 0,00 0,00 662,07 0,04
0,5 0,00 0,08 144,50 0,02
0,9 0,00 0,00 4,09 0,01

15 0,1 0,1 8,81 7,91 3600,00 0,06
0,5 23,35 23,17 3600,00 0,04
0,9 0,00 0,00 48,19 0,02

0,5 0,1 9,24 9,19 3600,00 0,07
0,5 24,35 23,09 3600,00 0,04
0,9 2,34 2,34 689,15 0,02

0,9 0,1 10,99 10,21 3600,00 0,06
0,5 19,94 19,20 3600,00 0,04
0,9 1,02 1,02 791,98 0,02

25 0,1 0,1 13,30 10,11 3600,00 0,60
0,5 25,46 18,65 3600,00 0,28
0,9 13,84 11,94 3600,00 0,12

0,5 0,1 13,39 8,49 3600,00 0,62
0,5 20,59 16,14 3600,00 0,31
0,9 15,28 12,49 3600,00 0,12

0,9 0,1 15,39 9,39 3600,00 0,56
0,5 16,36 13,92 3600,00 0,26
0,9 10,19 10,19 3600,00 0,13

50 0,1 0,1 18,12 7,53 3600,00 2,73
0,5 34,34 15,04 3600,00 1,14
0,9 * * * *

0,5 0,1 20,66 7,10 3600,00 2,96
0,5 30,11 13,93 3600,00 0,99
0,9 * * * *

0,9 0,1 18,18 6,19 3600,00 2,74
0,5 11,24 6,24 3600,00 0,92
0,9 * * * *

Table 1: Computational comparison of the proposed algorithm and CPLEX
*Instances with asterisk cannot be compared since CPLEX runs out of memory.

6 Conclusion
We provide a competitive iterated local search algorithm ILS for the order acceptance

and scheduling problem with batch delivery in a single machine environment. ILS includes a
variable neighborhood search and a dynamic programming algorithm to perturb a solution
if the algorithm is stuck at a local optima. Computational results show that the proposed
algorithm can find the optimal solutions for the majority of the instances with 10 orders
and can find better solutions than CPLEX for the instances with higher number of orders
in much shorter time.
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1 Introduction

In cellular manufacturing systems, one of the most used material handling devices is
an industrial robot. Among the interrelated issues to be considered in using robotic cells,
the scheduling of robot moves is one of the most significant ones. In such a robotic cell,
the processing of the parts are performed by the machines and the transportation of the
parts between the machines and the loading/unloading of the machines are performed by
a material handling robot.

The robotic cells consist of an input device, a series of processing stages, an output
device, and robots for material handling within the cell. Most robotic cells examined in
the literature assume one of the two layouts: linear or circular (Dawande et al. 2005). On
the other hand, two types of robots are discussed in the literature: A single gripper robot,
which can hold only one part at a time, and in contrast, a dual-gripper robot, that can
hold two parts simultaneously. If the robotic cell produces identical parts, we refer to it
as a single part-type. The identical parts cyclic scheduling problem is then to find the
shortest cyclic schedule for the robot; i.e., a sequence of robot moves that can be repeated
indefinitely.

From an optimization point of view, the most widely used objective in the literature is
that of maximizing the throughput; i.e. minimizing the cycle time. To achieve the maximum
throughput (minimum cycle time) it is assumed that the robot performs the operations at
its maximal speed. However, this may not be the most efficient energy consumption policy;
at its maximum speed, the energy consumption is also at its maximum. On the other hand,
the robot may need to wait in front of some of the machines to unload them because of
reaching them earlier than necessary (before the processing is completed). Accordingly,
there is a considerable potential for energy saving (Drobouchevitch et al. 2004).

In this study, we consider an m-machine robotic cell, where a dual-gripper robot is
used, as illustrated in Figure 1. The robot moves linearly along a track (linear layout) and
the system follows the flow shop assumption which means that each part goes through the
same sequence of machines (M1 → M2 → . . . → Mm). However, the sequence of robot
activities may be different. One of the decisions is to determine the optimal sequence of
these robot activities. However, this is a complex task, because even in a two-machine
dual-gripper robotic cells there is a total of 52 robot activity sequences that produce one
part (1-unit cycles) (Sethi et al. 2001).

The other decision is to determine the robot’s speeds in each of its moves to minimize
the total energy consumption. Therefore, we consider a bicriteria problem. There are very
few studies that consider bicriteria robotic cell scheduling problem. Gültekin et al. (2008,
2010) assumed that the processing times on the machines are controllable and considered
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Fig. 1. A Dual Gripper Robotic Cell.

the problem of minimizing the cycle time and total manufacturing cost in a single grip-
per robotic cell. This study is the first one to consider the energy consumption of the
robot together with the cycle time minimization objective in a dual gripper robotic cell.
For this problem, we adapted the epsilon-constraint method and moved the cycle time
objective to constraints by including an upper bound on it and developed a mixed integer
nonlinear mathematical programming formulation (MINLP). This MINLP is solved using
the BARON solver in GAMS. To improve its performance the nonlinear terms are refor-
mulated to build conic quadratic representation. The new transformed model is a mixed
integer quadratic conic programming (MIQCP) and solved with CPLEX 12.6.2.

In the next section, we define the problem and introduce the notation, in Section 3 we
provide the solution methodology. Section 4 concludes the study.

2 Problem definition and notations

In this section, we develop a notational and mathematical modelling framework for the
given problem. Being consistent with the existing studies in the literature, the following
notation is used to describe the problem.

2.1 Parameters

ϵ: Loading/unloading time of machine
dij : Distance between machine Mi and Mj

vij : Traveling speed of the robot between machine Mi and Mj

δij : Traveling time of the robot between machine Mi and Mj , δij = dij/vij

θ: The time for switching the robot grippers

2.2 Robot states

The following notation is used for our analysis of the robot states:

(g1, g2): where gi ∈ ¸{0, 1, . . . , m + 1}: represents the state of the grippers. For instance, (2,4)
means the first gripper (g1) has a part that requires processing next on machine 2 and
the second gripper (g2) has a part that requires processing next on machine 4, where
gi = 0 (e.g. state (0,0)) means that there is no part on the gripper i.
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Li: The robot activity that indicates a loading operation onto Mi. Just after loading a part
on this machine and it has no part on the corresponding gripper. Therefore, just after
this operation the corresponding gripper states are either (0, g2) or (g1, 0).

Ui: The robot activity that indicates an unloading operation from Mi. Just after perform-
ing this operation the robot has at least one part in one of its grippers that require
processing next on machine Mi+1. Therefore the corresponding gripper states are either
((i + 1), g2) or (g1, (i + 1)).

In order to understand better, consider the following example of a dual gripper robot
sequence for a two machine case: U0(1, 0) → U1(1, 2) → L1(0, 2) → U2(3, 2) → L2(3, 0) →
L3(0, 0). As it can be seen, there are 2(m + 1) = 6 robot activities in this sequence in
which U0(0, 1) is the first. After unloading a part from the input buffer, the robot unloads
another part with the other gripper from the first machine. Now, both grippers are full
and the robot is in front of machine 1. Since both grippers are not empty (g1, g2 ̸= 0), the
next robot activity must be a loading one. That is why we have a L1 as the third activity.
It means that the robot loads the part that it transported from the input buffer to M1.
Similar sequence of unloading and loading activities are performed on the second machine
and finally the unloaded part from M2 is transported to the output buffer.

Our mathematical programming formulation sequence the unloading and loading activ-
ities of the robot while satisfying the feasibility of this sequence. A feasible sequence must
load and unload each machine once, must not try to load an already loaded machine, un-
load an already empty machine, unload a machine with a loaded gripper, or load a machine
with an empty gripper. The model considers all such feasibility constraints, determines the
starting times of all the sequenced activities together with robot move speeds.

3 Solution methodology

The minimization of the cycle time and the minimization of the energy consumption
are conflicting objectives. In other words, improving one of them will sacrifice the other one
and further achievement on the cycle time (energy consumption) can only be accomplished
at the expense of higher energy consumption (cycle time).

To handle this bicriteria problem, we used the epsilon-constraint method, in which one
of the objectives is written as a constraint with an upper bound on its value. By utilizing
different upper bounds, different non-dominated solutions are generated. In this study, we
considered the cycle time objective as a constraint. Therefore, the problem becomes the
minimization of the total energy consumption subject to a given upper bound on the cycle
time.

Figure 2 shows a set of Pareto efficient solutions for a 2-machine problem instance. It
depicts the rate of change in the energy consumption and the change of optimal robot
sequence when different cycle time upper bounds are used. In this figure Solution (1∗)
corresponds to the problem where the robot’s speeds are at their upper limits. If a machine
has not completed the processing of a part when the robot arrives to unload it, the robot
waits in front of the machine. In such cases, instead of waiting, the robot can make its
previous moves slower. This situation corresponds to solution (2∗) in Figure 2. Which
results in the same cycle time with Solution 1∗ with a 28% less energy consumption.
Increasing the cycle time upper bound by 5 units, changes the optimal robot activity
sequence and leads to decrease in energy consumption as depicted in Solution (3∗). When
the cycle time upper bound is large enough, robot’s speeds of all moves becomes equivalent
to their lower bounds. In this case, the second gripper is never used as depicted in Solution
(4∗).
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Fig. 2. Cycle Time vs. Energy Consumption.

Table 1 shows the elapsed times to attain the above solutions with MINLP and MIQCP
formulations. To get all 8 non-dominated solutions took 66.7 seconds with MIQCP and
11529.4 with MINLP for this problem instance.

Table 1. Performance of MIQCP and MINLP for a 2-machine problem

MIQCP MINLP
CT Time (s) Time (s)
38.8 10.1 3646.2
43.8 9.0 3183.1
48.8 5.9 2222.4
53.8 10.8 1571.0
58.8 10.9 274.4
63.8 5.0 384.8
66.01 8.4 162.3
112 6.6 85.3
Total 66.7 11529.4

To test the performance of MIQCP and MINLP models, 100 instances of the prob-
lem are generated with different parameter values. In these test problems, the number of
machines varies between 2 and 6. For two-machine instances, all non-dominated solutions
are evaluated optimally with both MIQCP and MINLP. However, for 3 and 4 machine in-
stances, MINLP could not find any solution within the given time limit of 3 hours, whereas
MIQCP was able to find each non-nominated solution in 23.3 and 231.7 seconds for 3 and
4 machines, respectively. However, it was not possible to solve the instances with 5 and
6 machines with MIQCP with three-hour time limit. When robotic cells with speed con-
trol is compared with robotic cells without any speed control, our results reveal that the
controllability of robot speeds yields 30% energy savings on the average.
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4 Conclusion

This study, addresses a flow shop robotic cell scheduling problem consisting of m-
machines, each of which performs a different operation on the parts, plus an input and
output buffer, and a dual gripper robot that moves linearly along a track to transport the
parts between the machines. We deal with a bicriteria scheduling problem for optimizing
the cycle time and energy consumption of the robot at the same time.

We developed two mathematical models; a mixed integer nonlinear mathematical pro-
gramming formulation and a mixed integer quadratic conic programming formulation. Both
are evaluated with the same data sets and it is shown that MIQCP is much more efficient
than the MINLP in terms of the solution time. However, for larger number of machines,
the MIQCP formulation also fails to find solutions in reasonable times.

By means of the proposed approach of this study, which utilizes the controllability
of the robot speeds, we can get not only an economic return but also an environmental
benefit through reducing carbon emissions by decreasing the need for electric power across
the manufacturing sector.

For further studies, we plan to develop a heuristic algorithm to solve large problem
instances where the MIQCP formulation is not sufficient. Also, multiple part-type case can
be considered instead of producing identical parts.
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1 Introduction

The resource-constrained project scheduling problem (RCPSP) can be described as
follows: given is a set of completion-start precedence-related project activities that require
time and scarce resources for execution; sought is a vector of start times for the activities
such that all precedence relationships are respected, the total required quantity of each
resource never exceeds its prescribed capacity, and the total project duration is minimized.
The RCPSP poses a challenging combinatorial optimization problem; in addition to many
problem-speci�c solution approaches, various types of mixed-integer linear programming
(MILP) models have been proposed, which now receive increased attention due to the
improved performance of MILP solvers and computer hardware.

Two classes of models exist (cf. Artigues et al. 2015): discrete-time (DT) models and
continuous-time (CT) models. In DT models, the planning horizon is divided into a set of
equal-length time intervals, and activities can start only at the beginning of each of these
intervals; by contrast, in CT models, activities can start at any point in time over the
planning horizon. In general, DT models involve time-indexed binary variables, e.g., pulse
variables, cf. Pritsker et al. (1969) and Christo�des et al. (1987); step variables, cf. Kaplan
(1988) and Klein (2000); step variables and percentage-of-completion variables, cf. Bianco
and Caramia (2013); or on/o� variables, cf. Kopanos et al. (2014). In all these models,
the number of binary variables grows with the number of time intervals considered, which
is disadvantageous in the case of long activity durations. In the well-known CT model of
Artigues et al. (2003), resource �ow variables are used to model the resource constraints.
According to Koné et al. (2011), for instances with short planning horizons, DT models
exhibit a better performance than CT models; for instances with relatively long planning
horizons, however, CT models provide better results than DT models.

In this paper, we present a novel CT model for the RCPSP; a preliminary version of
the model, with some redundant constraints, has been published in Rihm and Trautmann
(2017). To model the resource constraints, we use two types of binary variables: assignment
variables specify which individual resource units are used for the execution of each activity,
and sequencing variables specify the order in which pairs of activities that are assigned to
the same resource unit are processed. To enhance the performance of the model, we modify
the sequencing constraints for pairs and triplets of activities that cannot be processed in
parallel, and we eliminate some symmetric solutions from the search space. In a comparative
analysis, we have applied the new model to two standard test sets from the literature. Our
computational results indicate that the model performs particularly well when resources
are very scarce or when the range of activity processing times is rather high.

The remainder of this paper is structured as follows. In Section 2, we describe the novel
MILP model. In Section 3, we report on the computational results. In Section 4, we present
some concluding remarks and an outlook on future research.
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2 Novel MILP formulation

Table 1 provides the nomenclature; activities 0 and n+1 are �ctitious activities repre-
senting the start and the completion of the project, respectively. The basic novel continuous-
time assignment-based MILP formulation, called CTAB in the following, reads as follows.

(CTAB)



Min. Sn+1 (1)

s.t.
∑Rk

l=1 r
k
li = rik (i ∈ V, k ∈ R) (2)

rkli + rklj ≤ 1 + yij + yji (i, j ∈ V, k ∈ R, l = 1, . . . , Rk : i < j,

(i, j) 6∈ TE) (3)

Si + pi ≤ Sj ((i, j) ∈ E) (4)

Si + pi ≤ Sj + (LSi + pi)(1− yij) (i, j ∈ V : i 6= j, (i, j) 6∈ TE) (5)

ESi ≤ Si ≤ LSi (i ∈ V ) (6)

yij ∈ {0, 1} (i, j ∈ V : i 6= j, (i, j) 6∈ TE) (7)

rkli ∈ {0, 1} (i ∈ V, k ∈ R, l = 1, . . . , Rk) (8)

The objective (1) is to minimize the makespan. Constraints (2) ensure that the required
number of resource units is assigned to each activity. Constraints (3) link the resource-
assignment variables to the sequencing variables: if the same resource unit is assigned
to two activities i and j, then a sequence between these two activities is enforced. The
sequencing variables yij are not de�ned for the pairs of activities (i, j) for which there is
a path from i to j in the activity-on-node digraph G = (V,E); the transitive closure TE
of E consists of all these pairs of activities. Constraints (4) model the completion-start
precedence relationships among the activities. Constraints (5) link the start time variables
to the sequencing variables. Constraints (6) ensure that each activity starts between its
earliest and its latest start time.

To enhance the performance of model CTAB, we include the following extensions:

1. For all pairs of activities i and j that cannot be processed in parallel, i.e., rik+rjk > Rk

for some resource k ∈ R, we add the constraint yij+yji = 1. Analogously, for all triplets
of activities i, j, and m that cannot be processed in parallel, i.e., rik + rjk + rmk > Rk

for some resource k ∈ R, we add the constraint yij + yji + yim + ymi + yjm + ymj ≥ 1.
2. All units of each resource are identical. Therefore, to eliminate some symmetric solu-

tions from the search space w.l.o.g., for each resource k ∈ R, we select an activity i
with largest requirement rik for this resource and assign the �rst rik resource units to
its execution by prescribing rkli = 1 for l = 1, . . . , rik.

3 Computational study

In this section, we compare the performance of the MILP model proposed in Section 2 to
the performance of the well-known models presented in Pritsker et al. (1969), Christo�des et

al. (1987), Klein (2000), Kopanos et al. (2014), and Artigues et al. (2003). We implemented
the MILP models in AMPL, and we used the Gurobi Optimizer 7.5 with the default solver
settings to solve the models. We performed all computations on a workstation equipped
with two 6-core Intel Xeon X5650 CPUs (2.66 GHz, 24 GB RAM). We set the solver time
limit to 500 seconds per instance and limited the number of used threads to 4. For the
comparative analysis, we used the j30 set (480 instances) from the PSPLIB (cf. Kolisch
and Sprecher 1996) and the Pack_d set (55 instances) generated by Koné et al. (2011).
Tables 2�4 summarize the results for test set j30, for the instances of test set j30 with
resource strength 0.2 (i.e. with very scarce resources), and for test set Pack_d, respectively.
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For the instances of set j30, the results can be summarized as follows. All models except
the model of Kopanos et al. (2014) provide a feasible solution to each instance (column
# Feas). With respect to the number of instances for which an optimal solution is found and
optimality is proven by the solver within the time limit (# Opt), the models of Pritsker et

al. (1969), Christo�des et al. (1987) and Kopanos et al. (2014) perform best; the same holds
for the number of instances for which, among all models, a best solution is obtained (#
Best). The average relative deviation (Gapbb) between the objective function value (OFV)
and the lower bound (LB) provided by the solver, i.e. (OFV − LB)/LB, is the lowest
for the models of Pritsker et al. (1969) and Christo�des et al. (1987). The lowest average
relative deviation between the OFV and the critical-path based lower bound (GapCPM)
and the best OFV returned by any of the models (Gapbest), respectively, is obtained by
the model of Pritsker et al. (1969) and the model presented in this paper. For the instances
with resource strength 0.2, the extended model presented in this paper even outperforms
the other models. For the instances of set Pack_d, which have considerably longer activity
durations than the instances of set j30, a feasible solution for all instances has been obtained
only by the model of Klein (2000) and the model presented in this paper; however, the
deviation from the lower bounds is notedly larger for the model of Klein (2000) than for
the model presented in this paper.

4 Conclusions

In this paper, we have proposed a novel continuous-time MILP model for the RCPSP
which is based on binary variables that represent the assignment of the project activities
to individual resource units and the sequential relationships between activities that are
assigned to at least one identical resource unit. In future research, further possibilities to
eliminate some symmetric solutions from the search space should be exploited, and the
novel model should be compared against other models known from the literature.
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Table 1. Nomenclature of the novel MILP formulation

V Set of all activities (V := {0, . . . , n+ 1})
pi Processing time of activity i ∈ V
E Set of all precedence relationships
TE Transitive closure of E
ESi Earliest start time of activity i ∈ V
LSi Latest start time of activity i ∈ V
R Set of all renewable resources
Rk Capacity of resource k ∈ R
rik Requirement of resource k ∈ R per time period for execution of activity i ∈ V
∗ Si Start time of activity i

∗ yij

{
= 1, if activity i must be completed before the start of j;
= 0, otherwise.

∗ rkli

{
= 1, if activity i is processed on unit l of resource k;
= 0, otherwise.

Table 2. Overall results for test set j30 (480 instances)

Formulation # Feas # Opt # Best Gapbb (%) GapCPM (%) Gapbest (%)

PriWaiWol69 480 443 451 1.0 13.8 0.2
ChrAlvTam87 480 446 453 0.9 13.9 0.3
Kle00 480 432 447 1.8 14.1 0.4
KopKyrGeo14 478 446 455 1.3 14.0 0.4
ArtMicReu03 480 354 389 10.8 16.2 1.7
CTAB basic 480 374 406 3.6 14.4 0.7
CTAB extended 480 417 444 1.8 13.8 0.2

Table 3. Results for j30 instances with resource strength 0.2 (120 instances)

Formulation # Feas # Opt # Best Gapbb (%) GapCPM (%) Gapbest (%)

PriWaiWol69 120 83 91 3.8 45.7 0.7
ChrAlvTam87 120 86 93 3.5 46.3 1.0
Kle00 120 72 87 7.2 46.9 1.4
KopKyrGeo14 118 86 95 5.1 46.9 1.7
ArtMicReu03 120 39 53 40.0 54.7 6.3
CTAB basic 120 79 90 9.6 46.3 1.2
CTAB extended 120 100 112 4.6 44.8 0.2

Table 4. Overall results for test set Pack_d (55 instances)

Formulation # Feas # Opt # Best Gapbb (%) GapCPM (%) Gapbest (%)

PriWaiWol69 48 6 6 99.2 218.5 59.2
ChrAlvTam87 0 0 0 - - -
Kle00 55 4 4 292.1 298.7 95.4
KopKyrGeo14 3 1 1 53.2 55.1 31.6
ArtMicReu03 48 5 16 103.9 103.9 4.7
CTAB basic 55 17 40 19.3 111.1 0.2
CTAB extended 55 19 53 12.4 110.7 0.1
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1 Introduction

Project scheduling and personnel staffing are two complementary optimisation problems.
In project scheduling, activities are scheduled given precedence relations between these
activities and a constant resource availability. Hartmann and Briskorn (2010) discuss the
characteristics of the resource-constrained project scheduling problem (RCPSP) and give
an overview of different extensions. Personnel resources are one of the most important
resources in project planning, accounting for 30-50% of the total project cost (Adrian 1987)
and therefore it is essential to determine the personnel budget to carry out a project. The
personnel budget results from the composition of a staffing plan and is based on the staffing
requirements generated by the project schedule. However, in personnel staffing time-related
constraints are imposed on the scheduling of individual workers, which complicate the
scheduling of the resources (see Van den Bergh et. al. (2013) for a full overview).

Tackling these two problems sequentially leads to sub-optimal outcomes. On the one hand,
the scheduling of activities determines the staffing requirements and should thus be in line
with the personnel staffing. On the other hand, personnel supply is an important factor
when activities need to be scheduled. When integrating these two-interrelated problems,
benefits can thus arise in both directions. First, additional flexibility is provided for the
project manager if resource scheduling is included. Second, demand management can be
applied to improve the resource utilisation.

2 Problem Definition

As stated above, integrating personnel staffing in project planning increases the schedule
flexibility since resource availabilities can be adapted to the project scheduling requirements.
On top of that, additional schedule flexibility is considered by incorporating different
modes for each activity. Each activity mode is defined by a trade-off between duration
and resource demand, where a longer duration will lead to a smaller resource demand.
Only one type of (renewable) resources is considered, namely personnel resources, which
are divided in regular and temporary workers. The scheduling of the regular workers implies
a manpower days-off scheduling problem with time-related constraints (Van den Bergh et.
al. 2013), whereas temporary workers are hired for a single day. The imposed time-related
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constraints limit the minimum and maximum weekly assignments, the minimum and max-
imum consecutive days-on and the minimum and maximum consecutive days off for a
single worker. Given the incorporation of multiple modes for each activity and the use of
personnel as only resource, the problem lies in line with the discrete time/resource trade-off
problem in project management (Ranjbar et. al. 2009).

When integrating the two presented problems, an accurate objective function should be
chosen. In project planning, makespan minimisation is the most common objective, whereas
cost minimisation is the primary focus of resource scheduling. These two objectives are thus
conflicting since a short makespan will lead to higher personnel costs and vice versa. To
overcome this issue, a fixed deadline is proposed resulting in strategic budgeting problem
which determines the size of the personnel staff. The objective function makes a trade-off
between the number of regular and temporary workers, since a regular worker should be
paid the entire planning period and a temporary workers has a higher daily cost.

3 Methodology

An iterative heuristic solution procedure was developed to solve the integrated project
scheduling and personnel staffing problem. This procedure combines a heuristic framework,
namely an iterated local search (ILS), with optimal solution procedures in the local search
step. A generic framework of an iterated local search is presented in algorithm 1, where
the different steps will be explained below.

Algorithm 1 Iterated Local Search (Lourenço et. al. 2010)
1: s0 = Generate Initial Solution()
2: s∗ = Local Search (s0)
3: repeat
4: s′ = Perturbation (s∗, history)
5: s′∗ = Local Search (s′)
6: s∗ = Acceptance Criterion (s∗, s′∗, history)
7: until termination condition met

Due to the observation that the initial solution of the local search is of great importance
for the performance of the algorithm (Lourenço et. al. 2010), different methods were
developed to create this initial solution. Instead of generating one solution, a pool of
solutions was created wherefrom the best solution was selected. This pool can be created
by creating random projects or by incorporating information from the linear programming
(LP) relaxation. In the first case, the assignment of a certain mode and a certain start
time to an activity is based on an uniform distribution. In the second case, the probability
distribution is biased by the fractional decision variable values of the LP relaxation.

The local search step is based on the two types of variables in our problem definition, namely
project and personnel variables, resulting in two types of decomposition strategies, activity-
and personnel-based decomposition. In activity-based decomposition, the complexity of
the project scheduling problem is reduced by fixing a large set of activities and thus
rescheduling only a small set of activities in a (limited) time period. In personnel-based
decomposition, the complexity of the personnel scheduling problem is reduced by fixing
certain staffing assignments or by fixing days-off/days-on in the underlying personnel
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patterns. The iterated local search takes the solution quality of the local search and
randomisation into account to perform a perturbation move.

4 Computational experiments

Different subsets of 30 instances, taking into account the different network topology mea-
sures (Vanhoucke et. al. 2008) and each subset having a different number of activities,
were selected from the multi-mode Project Scheduling Problem LIBrary (Kolisch and
Sprecher 1997) to test the quality of the solution procedure. Since only one type of
renewable resources is needed, the original modes become inefficient and a random mode
generation was invoked. Due to the integration of personnel scheduling, the daily resource
availability is determined based on the personnel schedule instead of the defined constant
resource availability. The deadline is set at the middle between the shortest and longest
path, unless otherwise stated.

We compare our procedure with a branch-and-price procedure, a branch-and-bound method
and a multi-start heuristic. The branch-and-price is based on Maenhout and Vanhoucke
(2016) and includes an additional layer to branch on the activity modes. The branch-
and-bound method only considers a limited set of personnel patterns, and is also used
as initial upper bound in the previous mentioned paper. Both the branch-and-price and
the branch-and-bound are truncated after 3600 seconds. To evaluate the ILS framework, a
multi-start heuristics was programmed where in each iteration, the local search is applied
on a random schedule. A stopping criteria of 100 iterations was imposed on the ILS and
multi-start heuristic.

When the number of activities is limited to 10 and the deadline is set to the critical path,
the expanded version of the branch-and-price finds the optimal solution for all considered
instances. The solutions obtained by the ILS lie very close to the optimum, leading to the
conclusion that the presented procedure can find near optimal solutions for small instances.
The branch-and-bound does not perform well on these instances, which can be explained
by the limited number of considered personnel patterns.

When the number of activities or the deadline increases, results indicate that the per-
formance of the branch-and-price procedure deteriorates quickly. Certainly when the number
of activities is high, the branch-and-price is unsuitable to find good solutions. Even the
branch-and-bound procedure with a limited set of patterns has a better performance, given
the time limit of one hour. The presented ILS framework outperforms the branch-and-
bound, meaning that better results are obtained in smaller timeframes. Moreover, the
proposed procedure outperforms the multi-start procedure, which advocates the use of the
iterated local search as heuristic framework.

5 Conclusion

Integrating personnel staffing with project planning when discrete time/resource trade-
offs are considered, is a challenging endeavour due to the high complexity. A heuristic
procedure was developed which is based on iterated local search. The local search consists
of decomposing the problem in smaller subproblems by applying different activity-based
and personnel-based decomposition strategies. By relying on randomisation and solution
quality to perform a perturbation move, the algorithm is able to reach good solutions in
relatively small time frames. When comparing the presented algorithm with other optimal
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or heuristic procedures, it is clear that the presented procedure outperforms the benchmarks
on time and solution quality. Furthermore, for small instances, the proposed procedure leads
to solutions close to the optimum.
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1 Introduction

This study is motivated by a fast-moving consumer goods company, denoted as ABC. It
has its European headquarters in Geneva and it cannot be named due to a non-disclosure
agreement. We consider a �agship product widely used in the world. Currently, the supply
chain is classically managed with a decentralized pull approach based on a reorder-point

policy: every echelon orders to the upstream echelon whenever the available inventory level
reaches the reorder point. The plant adjusts its production to these orders to minimize
storage. In each echelon, Economic Batch Quantities (EBQs) are used according to how
the products are transported (e.g., rounding up to pallets/layers/cases). Such a decentral-
ized inventory-management approach leads to a signi�cant volatility of the orders, and
to an even stronger volatility of the production. This so-called bullwhip e�ect has been
widely studied in the literature (Wang and Disney 2016). It can be caused by the following
elements: (1) each ordered quantity is rounded up to an EBQ; (2) overestimation of the
demand; (3) lead-time uncertainties along the supply chain. Consequently, a small demand
can create a large production order because of these ampli�cation e�ects. A historical re-
view of current practices creating the bullwhip e�ect can be found in Geary et. al. (2006). It
shows that most of the research on the topic either develops empirical/experimental studies
that analyze historical data, or it proposes management games, or it seeks for a mathe-
matical model to explain the e�ect and determine its factors. Surprisingly, only few studies
tackle real problems with simulation, and none with the integrated approach proposed
in this paper. However, many examples show that integrated optimization outperforms
sequential optimization (Darvish and Coelho 2017, Thevenin et. al. 2017).

The reader is referred to Axsäter (2015) for an overview on inventory management.
A basic inventory-management approach that avoids the bullwhip e�ect consists in daily
producing the same amount, computed as the average forecasted demand over a long
horizon. The production is then pushed along the supply chain down to the shops. However,
even if this push approach perfectly smoothes the production, it is far from optimality wiht
respect to shortage and inventory costs. Hence, a balance needs to be found between these
pull and push methods. The main contribution of this work is the design of an integrated
planning-by-range (PBR) approach for a real-world problem (P ) described in Section 2
(relying on an e�cient simulation-optimization algorithm), along with the adaptations of
the classical pull and push approaches for (P ). These methods are numerically compared in
Section 3. As highlighted in the conclusion (Section 4), PBR can be easily adapted to other
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supply chain networks, for which reducing the following features is important: shortage,
bullwhip e�ect and inventory level.

2 Presentation of the problem (P ) and of the proposed PBR approach

The considered 3-echelon supply chain is made of one plant, one distribution center
(DC), and dozens of shops. EBQ constraints have to be satis�ed: for each day t, the
shipments stP,DC from the plant to the DC (resp. stDC,x from the DC to each shop x)
have to be in number of layers (resp. cases). The number of cases per layer (resp. item
per cases) is nl (resp. nc). Storage is allowed at the DC (resp, in each shop x), and the
current inventory for each day t is denoted itDC (resp. itx). At the plant level, storage is
not allowed, and for each day t, the production pt must be in the ideal production range
[Pmin, Pmax] (given in number of layers per day). This range aims to mitigate the bullwhip
e�ect. Producing out of these limits is penalized. For ABC, the daily range is set to ±20%
of the average daily demand computed over a planning horizon of 100 days (assuming the
daily demand follows a normal distribution). The considered lead-times (in days) are the
following: L(P ) = 1 between production and availability (at the plant level) for shipment
to DC, L(P,DC) = 2 from the plant to the DC, L(DC) = 1 for cross-docking through the
DC, L(DC, x) = 1 from the DC to any shop x. Finally, the expected demand (resp. the
corresponding lost sales) for each day t and each shop x is denoted dtx (resp. ltx).

The only structural constraints for the supply chain are the material �ow conservation
in each echelon (�rst in the plant, second in the DC, and third in each shop):

stP,DC = pt+L(P )

itDC = it−1
DC + nl · st+L(P,DC)

P,DC −
∑

x s
t
DC,x

itx = it−1
x + nc · st+L(DC)+L(DC,x)

DC,x − dtx + ltx

(C)

Instead of the usual reorder-point approach, we propose to associate a daily MIN-MAX
range S(x) with each shop x. The MIN is what x needs to satisfy its daily demand, whereas
the MAX is the largest desired daily inventory for the considered product. MAX is de�ned
as the available part of two quantities: the shelf capacity (which is used �rst) plus the back-
room capacity assigned to the product (it is not a hard constraint, as each shop has other
products and therefore can �nd a place in the back-room if there is too much inventory of
the considered product). The sum of these two quantities is denotedM(x) for each shop x.
Consequently, the production can be planned based on the aggregation of the S(x) ranges,
and then pushed down to the DC (where the product can be temporarily stored but a
storage penalty is due) and �nally to the shops. The production plan is further calibrated
in order to perfectly satisfy the EBQ constraints. This approach should allow (1) the DC
having a much more stable response (even while keeping a low inventory), and (2) the plant
smoothing its peaks of production (mitigating the bullwhip e�ect). On the one hand, PBR
is innovative in the sense that from the shop perspective, any stock within its associated
range S(x) is not penalized (in contrast with the usual unit storage costs). On the other
hand, from the plant perspective, the production variability within the range [Pmin, Pmax]
is not penalized.

Three di�erent objective functions are considered, ranked in a lexicographic order from
f1 to f3 (i.e., a higher-level objective fi is in�nitely more important than a lower-level
objective fi+1). The lexicographic approach f1 > f2 > f3 was validated by ABC. The
three objective functions are, for each day t:

� f1(t) =
∑

x l
t
x: shortage at the shop level (i.e., less than MIN);

� f2(t) = max{Pmin − pt, 0}+max{pt − Pmax, 0}: production out of the ideal range;
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� f3(t) = it +
∑

x max{itx −M(x), 0}: excess of inventory in the shops and at the DC
(i.e., more than MAX in the shops, and more than zero stock in the DC).

As the demand is non-deterministic, simulation involving a rolling horizon H is used
(over a planning horizon of 100 days). The size of H is �xed to L(P )+L(P,DC)+L(DC)+
maxx L(DC, x) + 1 (which results in 6 days for ABC). This way, two production decisions
(i.e., involving the �rst two days of H) can reach the shop level within H. Note that
each decision that cannot impact the stocks in the shops within H are set to zero. When
simulating, for each shop x, only the demand of today dt0x and those of the previous days
are known, and the forecast for the next day dtx is simply the average daily demand plus its
standard deviation (as neither a trend nor a seasonality characterize the considered �agship
product). On each day of the planning horizon, a 3-step optimization is performed, each
step being solved by CPLEX. The resulting PBR approach is summarized in Algorithm 1.

Algorithm 1 Planning-by-range approach

Set t0 ← 1

While t0 + |H| ≤ 100, do:

� for each shop x, set dt0x as the actual known demand (instead of forecast);
1. minimize F1 =

∑
t∈[t0,t0+|H|] f1(t) while satisfying the constraint set (C);

let F ?
1 be the obtained minimum;

2. minimize F2 =
∑

t∈[t0,t0+|H|] f2(t) while satisfying (C), and such as F1 = F ?
1 ;

let F ?
2 be the obtained minimum;

3. minimize F3 =
∑

t∈[t0,t0+|H|] f3(t) while satisfying (C), and such as (F1, F2) = (F ?
1 , F

?
2 );

� freeze shipments and production of day t0;

� set t0 ← t0 + 1.

3 Results

PBR is compared with the two standard supply-chain-management methods pull and
push described in Section 1. On the one hand, pull minimizes the retailer's costs (i.e., short-
age and inventory in the shops). On the other hand, push minimizes the manufacturer's
costs (i.e., irregular production, and inventory in the DC).

Method pull uses reorder points for both the DC and the shops. Each time the available
inventory level is below its reorder point, an order is placed to the upstream level. A
production batch is launched each time an order comes from the DC, as the plant does
not hold inventory. The reorder point is set equal to (D + σ) · L, where D is the average
daily demand from the downstream echelon, σ is the daily standard deviation of D, and L
is the total lead-time from the upstream echelon (i.e., L(P ) + L(P,DC) for the DC, and
L(DC) + L(DC, x) for any shop x).

Method push �rst computes its ideal production rate p (in layers), which is the average
daily demand over the whole planning horizon of 100 days. It is usually not an integer. To
satisfy the EBQ constraint while having an almost constant production rate (i.e., around
p), each day t (from t = 1 to t = 100), dp · t − Qe layers are produced, where Q is the
number of layers produced until day t. The daily produced quantity is shipped to the DC as
soon as possible, and whenever the DC has any inventory, it ships it to the shops without
exceeding their desired inventories (as previously de�ned).
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The three methods are compared for 20 instances I1 to I20, generated randomly based
on the real data provided by ABC. Each instance is made of N shops. Instances I1 to I10
have N = 20 shops, with a large daily average demand per shop (in [6, 12] cases), and a
desired inventory per shop of 6 cases (2 for the shelf and 4 for the back-room). Instances
I11 to I20 have N = 50 shops, with a small daily average demand per shop (in [1, 4] cases),
and a desired inventory per shop of 3 cases (1 for the shelf and 2 for the back-room). For
instances I1 to I5 and I11 to I15, we have σ ∈ [50, 100]% of the average daily demand.
In contrast, σ ∈ [100, 150]% for the other instances. For each group of �ve instances, the
number of items per case/layer di�ers. More precisely, the numbers of items per case are
(6, 8, 12, 16, 20), whereas the corresponding numbers of cases per layer is (14, 10, 14, 10, 12),
those numbers being real data from �ve di�erent pack materials of ABC. Table 1 presents
the results for the considered methods. The following averaged indicators (over the planning
horizon of 100 days) are given to capture the performance on f1, f2 and f3, respectively.
F1 is the shortage percentage with respect to the average daily demand over all the shops.
F2 is the out-of-range production percentage. F3 is the percentage of exceeding stock with
respect to the total storage capacity that is not penalized. The latter is the sum of all the
desired inventories in the shops (knowing that the desired inventory in the DC is always
zero).

All the algorithms were coded with C++ under Linux, and run on 3.4 GHz Intel Quad-
core i7 processor with 8 GB of DDR3 RAM. For each time window H, each method is
able to �nd its solution within seconds, including CPLEX that always provides an optimal
solution. CPLEX is based on the 3-step algorithm presented in Section 2, and it has a
time limit of one minute per objective. For all three methods, the shortage penalty is
logically smaller for the instances with a smaller σ (i.e., instances I1 to I5, and I11 to I15).
As expected, pull shows a very small shortage (on average, 0.76% of the demand), but
a very irregular production pattern (on average, 61.03% of the production is out of the
ideal range). The relatively big inventory (on average, 23.07% of the free-of-cost capacity)
is due to storage at the DC. Unsurprisingly, push has no out-of-range production, but
it has the biggest shortage (on average, 12.45% of the demand) as it does not adapt its
production to the demand pattern. Interestingly, push shows much better results with a
larger number of shops: the shortage indicator roughly goes down from 25% (with N = 20)
to 5% (with N = 50). Indeed, the more shops there are, the more possibilities a �xed
production has to be pushed down to the shops, and hence the better the dispatching of
the production between the shops can be. PBR o�ers the best results: the average shortage
is only 0.32% of the demand, the average out-of-range production is limited to 0.02%,
and the average costly inventory is only 0.26% of the free-of-charge capacity. Remarkably,
none of the PBR performance indicator exceeds 1%, and even 0.11% for the out-of-range
production. The bullwhip e�ect is thus removed, while almost always avoiding shortage
and inventory penalties.
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Table 1. Comparison of pull, push and PBR approaches for realistic instances.

Pull Push PBR

Instance F1 F2 F3 F1 F2 F3 F1 F2 F3

I1 0.55 75.00 18.12 18.82 0.00 11.50 0.09 0.01 0.50

I2 0.63 59.00 30.90 19.19 0.00 17.12 0.17 0.00 0.00

I3 0.44 46.67 68.08 22.81 0.00 46.13 0.07 0.00 0.00

I4 0.55 54.50 18.79 16.28 0.00 10.37 0.07 0.01 0.17

I5 0.73 24.00 14.72 1.46 0.00 0.09 0.11 0.00 0.00

I6 1.28 70.50 26.81 27.92 0.00 15.95 0.51 0.01 0.50

I7 1.03 70.00 43.71 27.97 0.00 28.69 0.20 0.02 0.82

I8 1.53 77.00 89.22 28.71 0.00 53.61 0.74 0.04 0.82

I9 1.24 42.33 36.05 30.69 0.00 23.92 0.64 0.00 0.17

I10 0.88 8.00 25.76 4.66 0.00 3.11 0.02 0.00 0.00

I11 0.59 49.50 5.27 4.17 0.00 0.00 0.43 0.01 0.30

I12 0.35 110.00 7.50 4.80 0.00 0.00 0.23 0.04 0.42

I13 0.43 105.00 14.45 4.67 0.00 0.00 0.28 0.11 0.63

I14 0.42 113.00 5.51 5.14 0.00 0.00 0.31 0.03 0.25

I15 0.34 15.00 4.83 6.85 0.00 0.00 0.00 0.00 0.00

I16 0.79 57.50 6.56 4.20 0.00 0.00 0.56 0.00 0.12

I17 0.80 126.00 10.03 4.75 0.00 0.00 0.67 0.02 0.21

I18 1.18 47.50 20.94 5.94 0.00 0.00 0.81 0.02 0.21

I19 0.99 48.00 8.04 4.75 0.00 0.00 0.48 0.00 0.00

I20 0.46 22.00 6.13 5.22 0.00 0.00 0.03 0.00 0.00

Average 0.76 61.03 23.07 12.45 0.00 10.52 0.32 0.02 0.26

4 Conclusion

In this work, a planning-by-range (PBR) approach is proposed for the production and
distribution of a �agship product of a real company. PBR is speci�cally well adapted
for controlling the bullwhip e�ect. In this context, a lexicographic optimization problem is
designed for minimizing: (1) shortage, (2) out-of-range production, (3) undesired inventory.
PBR was tested for 20 realistic instances and very favorably compared with the well-
known pull and push approaches. Future works include the investigation of more complex
situations (e.g., multiple DCs, variable lead-times, promotional weeks).
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1 Introduction

The scheduling problem we study deals with n jobs to be processed onmmachines while
satisfying the precedence constraints. Considering the makespan, this problem is NP-hard
even with no precedence constraints and two machines(Lenstra et al. 1977). To the best of
our knowledge, there is no exact method for this problem even when m is �xed.

In this paper, we adapt some models to parallel scheduling problems and propose a new
one. Then, we compare their performance by testing them on benchmarks with precedence
constraints from PSPLIB.

2 Mathematical Models

In this section, we present di�erent models. Each model uses the variables Cj and Sj

as starting time and completion time of j. The objective is Cmax, the following constraints
hold for all models, and they are omitted hereafter:

Cj = Sj + pj , ∀j ∈ J
Cmax ≥ Cj , ∀j ∈ J

Sj ≥ Ci, ∀i, j ∈ J and i ≺ j

where pj is the processing time of job j and i ≺ j means i precedes j. J and M are
set of all jobs and machines. In the following sections, i, j ∈ J and k ∈ M. M represents
a large number, which can be de�ned as

∑
pj .

2.1 Relative-Order-Indexed Model1 (ROIM1)

This model uses binaries yki,j and zki,j as decision variables. yki,j = 1 if i is executed
immediately before j on k; zki,j = 1 if i is executed before j on k. Di�erent formulations of
this model can be seen in Blazewicz et al. (1991) and Unlu and Mason (2010) for problems
without precedence constraints. We introduce Sj and Cj for precedence constraints by
adding (1b), and we propose the following formulation:

(1a)yki,j ≤ zki,j , ∀i, j ∈ J , k ∈M
(1b)M(1− zki,j) + Sj ≥ Ci, ∀i, j ∈ J , k ∈M

(1c)M(1− zki,j) ≥
∑
k′ 6=k

∑
q

(zk
′

i,j + zk
′

q,j + zk
′

q,i + zk
′

j,q + zk
′

i,q), ∀i, j ∈ J , k ∈M

(1d)
∑
k

(yki,j + ykj,i) ≤ 1, ∀i, j ∈ J

(1e)
∑
k

∑
i

yki,j = 1, ∀j ∈ J
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(1f)
∑
k

∑
j

yki,j = 1, ∀i ∈ J

(1a) ensures that zki,j = 1 if yki,j = 1. (1c), (1d), (1e) and (1f) force each job has exactly
one predecessor and one successor. Notice that in (1e) and (1f), each job has to be executed
before(after) some other job. In practice, some dummy jobs are created to represent jobs
after(before) the last(�rst) executed jobs on each machine.

In fact, (1e) and (1f) convey the same meaning: if every job follows another(except
the �rst one), then every job has a follower(except the last one). If we remove one of (1e)
and (1f), the model still works well, but (16% in our experiment) slower. We call this a
redundant constraint.

2.2 Relative-Order-Indexed Model2 (ROIM2)

This model uses binaries zki,j and x
k
i as decision variable. x

k
j = 1 if j is on k. To associate

these two variables, a non-linear constraint, xki x
k
j = zki,j + zkj,i, ∀i, j, k, is given in Low

et al. (2006) and Gao et al. (2006) A linear version in Özgüven et al. (2010) introduces
new integer variables.

We proposed a new formulation which is superior to the others both theoretically and
in our practice as well:

(2a)
∑
k

xkj = 1, ∀j ∈ J

(2b)Ci ≤ Sj +M(1− zki,j), ∀i, j ∈ J , k ∈M

(2c)Mxki ≥
∑
j

(zki,j + zkj,i), ∀i ∈ J , k ∈M

(2d)
∑
j

(zki,j + zkj,i) +M(1− xki ) ≥ 1, ∀i ∈ J , k ∈M

(2e)M(zki,j + zkj,i) ≥ xki + xkj − 1, ∀i, j ∈ J , k ∈M

(2a) forces each job to be executed once. (2b) ensures that Ci ≤ Sj if zi,j = 1. (2c) and
(2d) consider two cases: xki = 0 then ∀j ∈ J , zki,j = 0; xki = 1 then ∃j, zki,j ∨ zkj,i = 1. (2e)
works when both i, j are on k, and forces one to precede the other.

2.3 Absolute-Order-Indexed Model(AOIM)

This model uses βl
k,j , which equals 1 if j is the lth job on k, as a principal variable. It

was originally designed for parallel scheduling problem without precedence constraints by
Blazewicz et al. (1991). To add precedence constraints, Demir and �³leyen (2013) introduces
T l
k to the model, which is the starting time of the lth job of k.
Here, we propose a similar formulation, which uses fewer variables:

(3a)T l+1
k − T l

k ≥ pjβl
k,j , ∀l ≤ n, j ∈ J , k ∈M

(3b)T l
k +M(1− βl

k,j) ≥ Sj , ∀l ≤ n, j ∈ J , k ∈M
(3c)T l

k ≤M(1− βl
k,j) + Sj , ∀l ≤ n, j ∈ J , k ∈M

(3d)
∑
j

βl
k,j ≤ 1, ∀l ≤ n, k ∈M

(3e)
∑
k

∑
l

βl
k,j = 1, ∀j ∈ J
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(3e) forces each job to be executed once. (3d) ensures that only one job can be executed
as the lth job on k. (3c), (3b) and (3a) works when βl

k,j = 1, they guarantee T l
k = Sj and

T l+1
k − T l

k = pj .

2.4 Compact Model(CM)

We propose a new order-indexed model here. It uses δi,j , which equals 1 if i is executed
before j on the same machine, and xkj as decision variables.

(4a)Ci − Sj ≤M(1− δi,j), ∀i, j ∈ J
(4b)M(2− xki − xkj ) + δi,j + δj,i ≥ 1, ∀i, j ∈ J , k ∈M
(4c)M(2− xk1

i − x
k2
j ) ≥ δi,j + δj,i, ∀i, j ∈ J , k1, k2 ∈M and k1 6= k2

(4d)
∑
k

xkj = 1, ∀j ∈ J

(4a) connects δi,j , Ci and Sj(if δi,j = 1 then Ci ≤ Sj). When both i, j are on k, (4b)
forces one precedes the other. (4d) make each job be executed once. (4c) sets δi,j and δj,i
as 0 when i, j are on di�erent machines.

Notice that when minimizing Cmax, (4c) is unnecessary because when i, j are on di�erent
machines, δi,j = 1 or δj,i = 1 can not reduce Cmax. However, it helps to give δi,j a
comprehensible meaning(δi,j = 1 if and only if i precedes j on the same machine) and has
a positive impact on the model (which is improved by 19% according to our tests).

3 Test Result and Analysis

We tested the models with benchmarks we built from precedence constraints in PSPLIB.
The platform we used is: IBM ILOG CPLEX Optimization Studio V12.6.0 on Intel Core
i7-4600U @2.10GHz. We compared their average time consumed to solve instances with
di�erent scales of jobs on m = 4 machines in the following table:

Table 1. Models' performance, where BV/IV/C means number of binary variables/integer vari-
ables/constraints; TC means average time consumed to solve the instances; '-' means the model
did not solve any instance on this scale within 6000sec

Model BV IV C TC TC TC

n = 15 n = 30 n = 60

CM 270 31 1125 0.92 1.22 13.32
ROIM2 900 31 1875 1.77 6.41 97.23
AOIM 900 91 2775 3.19 14.66 �
ROIM1 1920 31 2828 15.41 79.23 �
TIM 4920 31 5338 48.39 � �

As can be seen, CM stays ahead of the others and requires less space. The di�erent
speed of models results mostly from the di�erent decision variables used.

Inspired by the Time-Indexed Model (TIM) by Thomalla (2001), we also formulated
a version of TIM for parallel scheduling problem. It uses binary variable xkt,j , which is 1
if j starts on k at t. It was compared with other models, however, not developed in the
previous section due to its poor performance. It requires an estimation of an upper bound
of Cmax. It is set as

∑
pj for the worst case(single machine) in practice, which leads to
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large amounts of variables. In fact, the number of variables could be extremely large if pj is
not an integer. However, TIM is still the slowest even for instances of unit-processing-time
jobs. Both ROIM2 and ROIM2 use O(n2m) binary variables: ROIM1 uses two 3-dimension
variables, while ROIM2 and AOIM use only one. AOIM is the only one who requires extra
integer variable. The fastest model CM uses only 2-dimension binary variables and requires
fewest variables, which may be the principal advantage of CM.

We tested also instances with di�erent number of machines. When judging the models,
comparison results are similar as Table 1. Additionally, we �nd that when m is set as 4,
the models took longest time for solving.

4 Conclusion and Perspective

In this paper, we adapted models to the parallel scheduling problem with precedence
constraints and proposed a new one which outperforms the others by our test.

In addition of redundant constraints, we tested and �nd that sometimes the redundant
variables, such as Cj which could totally be replaced by Sj + pj , ameliorates the models.
How an redundant constraint or variable a�ects the model is worthy of being further
discussed.

Besides, the solving time does not depend merely on instance's scale, but also on number
of machines, the processing time of jobs, and the shape of precedence constraints. For
example, a subproblem of scheduling equal-processing-jobs with in-tree precedence graphs
can be �nished in polynomial time Hu (1961). The model is helpful to study experimentally
how they impact the solving time. Our next work direction follows this approach.
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1 Introduction

In this paper we present a branch-and-bound procedure for the resource-constrained
project scheduling problem with partially renewable resources and time windows (RCPSP/
max,π). For the first time the concept of partially renewable resources is embedded in the
context of projects with general temporal constraints.

Partially renewable resources were introduced by Böttcher et al. (1996) and have just
been considered for projects restricted to precedence constraints (RCPSP/π). For each par-
tially renewable resource a resource capacity for a subset of time periods of the planning
horizon is given. In this way timetabling and complex labor regulation problems can be
modeled as project scheduling problems (Álvarez-Valdés et al. 2006). For the RCPSP/π a
branch-and-bound procedure has been developed in Böttcher et al. (1999) and also approx-
imation procedures in Schirmer (1999) and Álvarez-Valdés et al. (2006, 2008) have been
investigated.

In Section 2 the RCPSP/max,π is described formally. Section 3 presents the enumera-
tion scheme the developed branch-and-bound procedure is based on and in Section 4 the
branch-and-bound procedure is outlined. Finally, in Section 5 the results of a computa-
tional study are presented where we compared the performance of our branch-and-bound
procedure with the outcome of the mixed-integer linear programming solver IBM CPLEX.

2 Problem description

The resource-constrained project scheduling problem with time windows and partially
renewable resources (RCPSP/max,π) can be modeled as an activity-on-node network where
the nodes correspond to all activities of the project V = {0, 1, . . . , n + 1} with n real
activities and the fictitious activities 0 and n + 1 representing the start and end of the
project, respectively. Each activity i ∈ V is assigned a non-interuptible processing time
pi ∈ Z≥0 and a resource demand rd

ik ∈ Z≥0 for each partially renewable resource k ∈ R
considered in the project. The arcs of the network given by the set E ⊆ V ×V represent the
temporal constraints between the activities where the arc weight δij ∈ Z for arc 〈i, j〉 ∈ E

implicates a minimal time lag between the start times of activity i and activity j which
has to be fulfilled. For each resource k ∈ R a resource capacity Rk and a subset of time
periods of the whole planning horizon Πk ⊆ {1, 2, . . . , d̄} is given with d̄ as a given maximal
project duration. It is assumed that an activity i just consumes a resource k with rd

ik units
in each time period of Πk activity i is in execution where the start times of all activities
are restricted to integer values. The number of time periods an activity i with start time
point Si is in execution during the defined time periods of resource k is given by the so
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called resource usage ru
ik(Si) := |{Si +1, Si +2, . . . , Si +pi}∩Πk| so that the corresponding

resource consumption can be determined by rc
ik(Si) := ru

ik(Si) · rd
ik.

The objective of the problem is to assign each activity i ∈ V a start time Si so that
all time and resource constraints are fulfilled and the project duration is minimized. In the
following a sequence of start times of all activities S = (S0, S1, . . . , Sn+1) with S0 := 0
is called a schedule where it is said to be time-feasible, resource-feasible or feasible if it
fulfills all temporal constraints, all resource constraints or all constraints, respectively. The
problem RCPSP/max,π can be stated as follows:

Minimize f(S) = Sn+1

subject to Sj − Si ≥ δij (〈i, j〉 ∈ E)

S0 = 0∑
i∈V

rc
ik(Si) ≤ Rk (k ∈ R)

Si ∈ Z≥0 (i ∈ V )

3 Enumeration scheme

The enumeration scheme of the developed branch-and-bound procedure is based on
a stepwise restriction of the allowed resource usages of the activities of the project. The
procedure starts with the determination of the earliest possible start times ESi of all
activities i ∈ V for the resource-relaxation of RCPSP/max,π. If this schedule is resource-
feasible the optimal solution is already found. Otherwise there is at least one resource k

whose resource capacity Rk is exceeded so that the resource usage of at least one activity
consuming resource k have to be decreased to get a feasible schedule. The enumeration
scheme makes use of the start time dependency of the resource usage ru

ik(·) of all activities
i ∈ V for resource k. It is easy to see that for a feasible schedule S the resource usage
of at least one activity i ∈ V has to be lower than the resource usage of the resource-
infeasible schedule ES, i.e., ru

ik(Si) ≤ ru
ik(ESi) − 1. So we preserve all feasible schedules

by branching the resource-relaxation in subproblems where each subproblem restricts the
resource usage of an activity i with ru

ik(ESi) > 0 to ru
ik(ESi) − 1. The resource usage

restriction of activity i for resource k is achieved by permitting only start time points t with
ru

ik(t) ≤ ru
ik(ESi) − 1. In order to save these permitted start time points for all activities in

the enumeration process a so called start time restriction Wi for each activity is introduced.
This is set to Wi := {ESi, ESi+1, . . . , LSi} for each activity at the beginning of the process
with LSi as the latest possible start time point of activity i for the resource-relaxation of
RCPSP/max,π. For the subproblem in which the resource usage of activity i is restricted
the start time restriction is set to Wi := Wi ∩ {t ∈ {0, 1, . . . , d̄} | ru

ik(t) ≤ ru
ik(ESi) − 1}

so that the resource usage of activity i of resource k is lower or equal to ru
ik(ESi) − 1 if

activity i starts at time point t ∈ Wi. For each achieved subproblem the earliest possible
start time points of all activities have to be determined so that all temporal constraints of
the RCPSP/max,π are fulfilled and also Si ∈ Wi for each i ∈ V is satisfied. This can be
done by a modified label correcting algorithm which determines the earliest possible start
time points denoted by ESi(W ) of all activities i ∈ V with a worst-case time complexity
of O(|V ||E| (1 + B)) with B as the number of interruptions of consecutive time points in
Wi over all activities i ∈ V . If all determined and all following subproblems are tackled
like described for the resource-relaxation of the RCPSP/max,π it can be shown that the
procedure determines after a finite number of iterations an optimal schedule or shows the
infeasibility if there is no optimal schedule.
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4 Branch-and-bound procedure

The enumeration scheme describes the decomposition of the currently considered part of
the solution space in one or more components for a chosen conflict resource, i.e., a resource
whose capacity is exceeded. The strategy to decide which of the conflict resources is used
next to decompose the solution space is called branching strategy. The way to determine
which node in the enumeration tree is considered next is called search strategy. For both
strategies different approaches have been investigated on benchmark test sets.

Before the branch-and-bound procedure is started a preprocessing phase is conducted.
In this step start time points of activities are eliminated for which it can be shown that
they cannot be part of any of the feasible schedules. For this a start time point of an
activity is eliminated if the resource consumption of the activity started at this time point
and the sum of the minimal resource consumptions of all other activities over all start time
points satisfying the temporal constraints to the considered activity exceeds the capacity
of at least one resource.

Furthermore, for each node in the search tree two lower bounds for the project duration
are determined to be able to prune this node and the following parts of the enumeration
tree if one of these lower bounds is greater or equal to the project duration of the best found
solution so far. The first lower bound is given by the minimal possible project duration
taking the start time restrictions of all activities into consideration. The second lower bound
is equal to the minimal project duration for which at least one resource-feasible schedule
in the currently considered part of the search tree exists so that all temporal constraints
to the start and the end of the project are satisfied.

To reduce the search tree even further a dominance rule is used in addition. For this
an unexplored node is called dominated by another node if the restrictions of the resource
usages over all activities and resources are lower or equal to the resource usage restrictions
of the other node. In this case the unexplored node is pruned from the search tree.

5 Performance analysis

In order to evaluate the performance of our branch-and-bound (BnB) procedure we have
compared the obtained results with the outcome of the mixed-integer linear programming
(MILP) solver IBM CPLEX in the latest version 12.7.1. The computational study was
conducted on a PC with Intel Core i7-3820 CPU with 3.6 GHz and 32 GB RAM under
Windows 7. The BnB procedure was coded in C++ and compiled with the 64-bit Visual
Studio 2015 C++-Compiler. The instance sets we have used are adaptions of the well-
known benchmark test set UBO (Schwindt 1998) where we replaced the included renewable
resources by 30 partially renewable resources using the generation procedure described in
Schirmer (1999). Note that there is no instance with a project network containing a cycle
of positive length. In this manner we have generated 729 instances with 10, 20, 50, 100,
and 200 activities, respectively. For the computational study we set the runtime limit to
60 seconds and used an adaption of the MILP given in Böttcher et al. (1999) for the IBM

CPLEX solver. The mathematical program is given as follows:

Minimize
∑

t∈Tn+1

t · xn+1,t

subject to
∑

t∈Ti

xit = 1 (i ∈ V )∑
t∈Tj

t · xjt ≥
∑

t∈Ti

t · xit + δij (〈i, j〉 ∈ E)∑
i∈V

rd
ik

∑
v∈Πk

∑
τ∈Qi,(v−1)∩Ti

xiτ ≤ Rk (k ∈ R)

xit ∈ {0, 1} (i ∈ V, t ∈ Ti)
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The MILP is a time-indexed formulation with binary variables xit for each activity
i ∈ V and each start time point t of the activity in the set Ti := {ESi, ESi + 1, . . . , LSi}.
The binary variable xit takes the value 1 exactly if activity i starts at time point t, i.e.,
t = Si. The set Qit contains all time points activity i could be started so that activity i

would be in execution at time point t, i.e., Qit := {t − pi + 1, . . . , t}.

Table 1. Results of the computational study

UBO10π UBO20π UBO50π UBO100π UBO200π

BnB CPLEX BnB CPLEX BnB CPLEX BnB CPLEX BnB CPLEX

#opt 511 565 288 391 116 113 58 34 53 5

#feas 55 1 259 160 352 65 333 6 312 1

#infeas 129 132 30 57 0 19 0 3 0 0

#noSol 3 0 34 3 59 330 93 441 101 460

#trivial 31 31 118 118 202 202 245 245 263 263

∅CPU
opt 1.60 0.56 2.51 6.78 1.72 4.89 1.76 15.41 6.21 40.51

∅CPU
infeas 0.44 0.03 2.31 0.45 – 2.44 – 14.90 – –

The results of the computational study are given in Tab. 1 where for each test set,
for instance UBO10π with 10 activities, the results of the BnB procedure and the IBM

CPLEX solver (CPLEX) are listed. The term #opt stands for the number of optimal solved
instances for which the schedule ES is not optimal, term #feas describes the number of
instances the solution procedure was able to find a solution which could not be proofed
to be optimal and #infeas gives the number of instances the procedure could proof the
infeasibility for. In the following two rows, the number of instances the solution procedure
was not able to find any feasible solution (#noSol) and the number of so called trivial
instances for which the schedule ES is already optimal (#trivial) are given. Finally, the
last rows show the average used CPU time in seconds over all optimal solved (∅CPU

opt ) and
over all instances for which the infeasibility could be proofed (∅CPU

infeas).
In Tab. 1 it can be seen that the IBM CPLEX solver dominates the developed BnB

procedure for the instance sets UBO10π and UBO20π. In contrast, the BnB procedure is
able to obtain optimal and feasible solutions for more instances of the test sets UBO50π,
UBO100π and UBO200π.
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1 Introduction

�Multiagent scheduling problems� consider that several agents are competing for the use
of the same resources. Each agent is responsible for a set of jobs, and aims at minimizing
one objective function that depends only on the completion times of its associated subset
of jobs. When the subsets of jobs are disjoint, the problems are called Competing scheduling

problems (Agnetis, Mirchandani, Pacciarelli and Paci�ci 2004). Such problems corresponds
to some real world situations as introduced in (Agnetis, Billaut, Gawiejnowicz, Pacciarelli
and Soukhal 2014).

In this study, we consider two agents A and B. Agent A (resp. B) is associated
with the set of nA (resp. nB) jobs, denoted by NA = {J1, J2, ..., JnA

} (resp. NB =
{JnA+1, JnA+2, ..., Jn}), where n = nA + nB .

The n independent jobs should be scheduled without preemption on a single machine.
Additional renewable resources are however necessary to process each job. Several types of
such resources are needed, denoted Rj , j = 1 . . . k. Hence, at execution time of job i, rij
units of available resource are required. For each job i, the start time si and its �nished
time fi (i = 1, . . . , n) are �xed where its processing time pi = fi − si. wi is the weight of
job i. Dealing with each type of resources, the machine can process more than one job at
a time provided the resource consumption does not exceed a given value Rj (j = 1 . . . k).
This machine is continuously available during time interval [0,∞). All data are assumed
positive integers. The processing times of jobs is formatted in slotted windows. The total
time period [0, T ] is partitioned into equal length slots (l0) with T = maxi,i=1,...,n(fi). We
suppose that: si < fi and ri,j ≤ Rj for all i = 1, . . . , n and j = 1 . . . k. The objective of
each agent is to minimize its total rejected costs. Let xi be the binary decision variable
where xi = 1 if job i is rejected; 0 otherwise. We denote the rejected cost of agents A
and B by ZA =

∑nA

i=1 wixi and ZB =
∑n

i=nA+1 wixi, respectively. In this study, both
linear combination of criteria approach and ε-constraint approach are used to determine
one Pareto optimal solution.

According to the three-�eld notation of multiagent scheduling problems introduced in
(Agnetis, Billaut, Gawiejnowicz, Pacciarelli and Soukhal 2014), problems we address are
denoted by: 1|CO|F`(Z

A, ZB) with F` = λZA + (1− λ)ZB ; And 1|CO|ε(ZB/ZA). These
problems are all NP-hard even if only one agent is considered (monocriterian case) (Zahout,
Soukhal and Martineau 2017).

The addressed problem can be met in a data center where the objective is to optimize
the objective function of each user (agent). Virtual Machines VMs (jobs) submitted by the
users should be executed on the same cluster (only one cluster is considered in this study).
For example, this cluster owns three limited types of renewable resources CPU, MEMORY
and STORAGE with capacities equal to Q1 CPU, a certain quantity of memory Q2 and
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a certain storage capacity Q3. In this case, to execute VMi, a number of virtual CPUs
ri1, virtual memory ri2 and hard drives ri3 are needed. The monocriterian case has been
addressed in (Angelelli, Bianchessi and Filippi 2014) where the authors consider only one
additional resource (memory) and develop methods to determine one feasible solution.

In the context of grid computing, (Cordeiro, Dutot, Mounié and Trystram 2011) con-
siders organizations that share clusters to distribute peak workloads among all the par-
ticipants. Each cluster is associated with one agent and the global objective function is
to minimize the makespan. The authors propose a 2-approximation algorithm for �nding
collaborative solutions.

2 Exact methods

2.1 Linear combination of criteria

Consider the classical scheduling problem 1||Z where Z =
∑

1≤i≤n w
′
ixi. The two fol-

lowing scheduling problems are equivalent: 1|CO|F`(Z
A, ZB) and 1||Z. In fact, we set

w′i = λwi for all Ji ∈ NA and w′i = (1 − λ)wi for all Ji ∈ NB. Hence, we propose the
following time indexed integer linear programming formulation (ILP) where: xi is a binary
variable equal to 1 if job Ji is rejected, 0 otherwise; And yit is a binary variable equal to
1 if job Ji is executed at time t, and 0 otherwise.

Minimize:
∑
i∈N

w′ixi

subject to:

fi−1∑
t=si

yit = (fi − si) ∗ (1− xi) ∀i ∈ N (1)

∑
i∈N

yit ∗ rij ≤ Rj ∀j ∈ R ;∀t ∈ [0, T ] (2)

xi ∈ {0, 1}, yit ∈ {0, 1} ,∀i ∈ N , ∀t ∈ [0, T ].

The constraints (1) ensure that if job Ji is not rejected then it is scheduled during its
time interval. The constraints (2) ensure that no more than Rj quantities of the required
resources are consumed at time t.

2.2 ε-constraint approach

To determine a non-dominated solution, we propose to use previous ILP where the
objective function is now: Minimize ZB =

∑
i∈NB wixi. Then to the two inequalities (1)

and (2), we add following new constraint: ZA ≤ QA. It means that the total rejected cost
de�ned by non-scheduled jobs of agent A does not exceed a given value QA.

This ILP is also used to compute the optimal Pareto front.

3 Greedy heuristics

The scheduling problems under this study have many applications, but they were moti-
vated by research into on-line system and integrated-services networks, where the number of
jobs to be processed can be extremely large, so low computational running time is essential.
Hence, the resolution methods must have low complexity, not just polynomial complexity.
In tis section, we presente low-complexity (O(nlogn)) greedy algorithms. Roughly, this
algorithm works as follow. If ε-constraint approach is used, jobs of each agent are sorted
according to a given priority rule. At �rst, we try to schedule jobs of agent A with respect
of its objective (i.e. ZA ≤ QA). Jobs are taken according to their priority order. Job is
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rejected if it can not be scheduled. Then, within the obtained solution, we try to schedule
jobs of agent B minimizing its objective function ZB .

When linear combination of criteria approach is used, whole jobs are sorted according to
a given priority rule. Then, we solve the scheduling problem 1||Z where Z =

∑
1≤i≤n w

′
ixi.

It means that jobs with higher priority are scheduled �rst, if possible.

3.1 Priority rules

1. Weighted Shortest Processing Time First (WSPT ): Jobs are sorted in non-
decreasing order of (fi−si)/wi, in case of ties, job with the smallest �nished time come
�rst, otherwise lexicographical order is considered. This WSPT rule allows resources
to be released as soon as possible.

2. Weighted Capacity-Makespan (WCM): Jobs are sorted in non-decreasing order
of their occupied space divided by wi given by the following formula: (

∑
j∈R rij ∗ (fi−

si))/wi, in case of ties, the job with the smallest �nished time come �rst, otherwise
lexicographical order is considered. The idea of using WCM rule is to minimize the
space occupied by jobs de�ned by processing time per quantities of consumed resources.

4 Computational experiments

We implemented our algorithms in C++ language and executed experiments on a
workstation with a 2.8 Ghz Intel Core i7 processor and 8 GB of memory. We used IBM
ILOG CPLEX Optimization Studio version 12.6.3 to solve the ILP models.

We assessed the performance of the algorithms on 50 instances, with a number of jobs
n ∈ {20, 40, . . . , 100} where 30% of n are jobs of agent A (10 instances are generated per
n). We generated the job-starting times si using a discrete uniform distribution between
1mn and 1400mn. Similarly, we generated the job-�nishing time of each job Ji has using
a discrete uniform distribution between (si + 1)mn and (1440 − si)mn. We considered
three types of resources. Without lost of generality, we normalize the units of a renewable
resource to 1000. Hence, Rj = 1000, j = 1, 2, 3. For each job Ji, rij randomly generated in
[1, 1000], i = 1, . . . , n and j = 1, 2, 3.

The experimental results are summarized in Table 1.

Table 1. Computational results for problem 1|CO|ε(ZA, ZB) with nA = 30%n

n ILP WSPT WCM
CPUs |S∗| CPUs |S| GD %S %wS CPUs |S| GD %S %wS

20 0,8 4,1 0 3,5 1,16 47 40 0 3,6 1,05 47 43

40 3,0 6,5 0 4,0 3,20 34 25 0 4,0 3,20 32 41

60 8,0 10,2 0 5,3 8,86 17 40 0 5,3 8,77 15 49

80 15,6 12,8 0 5,3 13,00 10 12 0 4,9 10,00 14 13

100 35,1 21,9 0 6,6 21,00 2 37 0 6,9 19,00 3 40

The �rst column in Table 1 shows the size of the instance (number of jobs). We com-
puted the average computation time in seconds required to obtain the Pareto front for each
method: ILP model, Weighted Shortest Processing Time First (WSPT ) and Weighted
Capacity-Makespan (WCM). This computation time is denoted by CPUs. The size of
exact (resp. approximate) Pareto front is denoted by |S∗| (resp. |S|).
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For each instance, we compare the exact front S∗ generated by ILP model with
the Pareto front S generated by heuristics (WCM and WSPT ). Di�erent performance
measures of heuristics are used and described as follow. Given S∗ = {a1, . . . , a|S∗|} and
S = {b1, . . . , b|S|}, we categorize these measures in two classes:

� Cardinality measure: we calculate the size of the optimal Pareto front |S∗|, and the
approximated Pareto front |S|. We then combine these metrics to obtain the percentage
of strict non-dominated solutions generated by WCM and WSPT .

%S =
|S ∩ S∗|
|S| ∗ 100

and %wS, the percentage of weak non-dominated solutions generated by WCM and
WSPT .

� Average minimum Euclidian distance GD: let di be the minimum Euclidian distance
between the element bi ∈ S and some element of S∗. GD is given by:

GD =
1

|S| (
|S|∑
i=1

di)

The �rst result concerns the performance of the proposed mathematical model ILP .
CPLEX delivers optimal solutions for the 50 instances. The required average computation
time per instance is less than 35 seconds (1s for instances of 20 jobs). In addition, we
conducted additional tests to analyze the performance of ILP on large size instances (up
to 500 jobs). For example, the maximum computation time needed by ILP to calculate the
exact Pareto front with instances of 500 jobs is 45 minutes.

According to the data displayed on the Table 1 and according to cardinality measure, the
number of Pareto solutions increases with increasing number of jobs. Over all 50 instances,
22% of Pareto solutions generated by heuristic WCM or WSPT are optimal solutions,
while 37% of solutions are weakly Pareto solutions generated byWCM whenWSPT �nds
31%. Dealing with GD measure, the average minimum Euclidean distance given by WCM
(resp. WSPT ) is 14,5 (resp. 17,0).

We observe that when the number of jobs increases, the average percentage of the
exact/weakly Pareto solutions generated by heuristics WCM and WSPT decreases. For
example, on the 20-job (resp.100-job) instances, 90% (resp. 43%) of the Pareto solutions
generated by heuristic WCM are exact or weakly solutions. Therefore, GD increases to
an average of 1.05 (resp. 19). We observe almost the same performances with WSPT . In
fact, dealing with %wS measure WCM obtains some advantage.

However, these methods are very useful to solve studied problem given its complexity.
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1 Introduction

Project performance is constantly affected by risks, and thus the operation of effective
project risk management (PRM) is significant for the success of the whole project. In
general, PRM consists of three phases: risk identification, risk assessment and risk response.
Though the three processes are of equal importance to the success of PRM, risk response
is always considered to have direct influence in reducing the risk exposure, which should
be conducted right after risks being identified and analysed.

Risk response action (RRA) selection, which plays an important role in project risk
management (PRM), has attracted much scholarly attention. Some methods such as the
matrix-based method (Datta and Mukherjee 2001, Elkjaer and Felding 1999, Flanagan
and Norman 1993, Miller and Lessard 2001, Piney 2002), the trade-off method (Chapman
and Ward 2003, Klein 1993, Haimes 2015, Kujawski 2002, Pipattanapiwong and Watanabe
2000), the decision tree method (Dey 2002, 2012, Marmier et al. 2013, 2014, Kujawski and
Angelis 2010), and the optimization method (Ben-David and Raz 2001, Ben-David et al.
2002, Fang et al. 2013, Kayis et al. 2007, Sherali et al. 2008, Zhang and Fan 2014, Zhang
2016) are proposed in last several decades. These methods have made significant contribu-
tions to RRA selection from different perspectives. However, there are some limitations in
the existing methods. The matrix-based method and the trade-off method only consider
two criteria and the characteristics of the RRAs are not considered. In addition, in the
two methods, it is not convinced whether the determined RRAs are optimal. Although the
RRA selected from the decision tree method is optimal to each risk, it would be a difficult
and time-consuming task to construct a decision tree in the situation of complex projects
or multiple risks. The optimization method can avoid the above limitations and obtain an
optimal set of RRAs. However, in all the above methods, the candidate RRAs are devel-
oped based on the evaluation of PMs and experts. It is very likely that some RRAs with
better effects may be left out, which may further reduce the overall risk response effect.
Therefore, it is crucial to determine proper RRA alternatives in RRA selection. The case-
based analysis provides some insights to determine proper RRA alternatives. The core idea
of the case-based analysis is to solve current problems by reusing and referring the knowl-
edge, information, and the experiences from historical similar situations. It allows PMs to
retrieve similar historical risks and corresponding RRAs from historical cases. Thus, in this
study, the authors attempt to propose a decision support method that combines both the
case-based analysis and the optimization model in helping PMs choose appropriate RRAs,
and managerial suggestion and implication can be drawn.

267



2 Methodology

The framework for the integrated method in this study is shown in Figure 1.

Case database

Fuzzy similarity 
computation

Alternative RRAs 
adaptation

Model  
construction and 

solution 
Screen out

Fuzzy 
similarities

The set of RRAs 
to be implemented

Alternative RRAs
Revised 

alternative RRAs
Historical risks

Target risks

Historical documents

 

Fig. 1. Framework for the integrated method.

2.1 RRA alternatives formulation

This section presents a case-based method to retrieve historical risks and their cor-
responding RRAs. To do this, the target risks and representation of historical cases are
described firstly. In PRM, project risk can generally be characterized by the product of its
probability and impact. In our research, linguistic terms are used to describe risk probabil-
ity and impact in the process of risk evaluation, and the fuzzy set representation for each
linguistic term is used.

In the case database, each historical case includes three types of information: risk in-
formation, project information, and RRA information. Take Case 1 (a historical case) for
example, R1

1 denotes the 1-st historical risk in the 1-st historical project and A1
1 denotes

its corresponding RRA. The probability and impact of R1
1 are evaluated as “unlikely” and

“low” by experts, respectively. Similar to the approach of describing the risk probability
and impact, the implementation effect of each RRA is also represented in linguistic terms
and the fuzzy set representation for linguistic terms are used.

The fuzzy similarity between two fuzzy numbers can be obtained by Equation (1), in
which d̃(A, B) is the fuzzy distance between fuzzy number A and fuzzy number B and can
be calculated according to the study of Guha and Chakraborty (2010), 0 ≤ d̃(A, B) ≤ 1.

s̃A,B = 1 − d̃(A, B) (1)
Besides the risk probability and impact, the categories that target risks and historical

risks belong to and the time interval between the evaluations of target risks and historical
risks are also factors that may affect similarities between target risks and historical risks.
With the consideration of the above mentioned factors, the similarity between two risks
can be calculated by Equation (2).

s̃ijk = ϵh
ijk

w1 s̃P
ijk + w2 s̃L

ijk

(1 + d)∆yijk
(2)

268



In Equation (2), s̃P
ijk and s̃L

ijk denote the similarities between the risks Rk
j and Ri in

terms of the probability and impact, respectively. w1 and w2 denote the weights of the risk
probability and impact, respectively, reflecting the PM’s preferences for the two attributes,
in which w1 ∈ [0, 1], w2 ∈ [0, 1] and w1 + w2 = 1. d denotes the value of the time factor,
and a higher value of d means that more attention should be paid to historical risks that
have occurred in recent years. ∆yijk denotes the time interval between the evaluations of
Rk

j and Ri.
The historical risks whose similarities are higher than a predefined threshold (σ) can

be screened out. After screening out similar historical risks, their corresponding historical
RRAs can be obtained. However, because the historical RRAs were formulated with respect
to the historical risks rather than the target risks, it is necessary for PMs to make adapta-
tion before adopting them to mitigate the target risks. The adaptation can be made from
three aspects: RRA itself, the implementation cost of the RRA and the estimated effect of
implementing the RRA. Let D̂k

j and Ĉk
j denote the revised implementation effect and cost

of Ak
j respectively. After the adaptation process, the historical RRAs can be thought of as

the alternatives for the next step of optimal selection.

2.2 RRA selection optimization model

Before model construction, several assumptions need to be made. Assumption 1: The
target risks are independent mutually. Assumption 2: In the case database, a historical
risk has only one corresponding RRA. Assumption 3: The budget is considered to be
the only resource constraint. Since fuzzy numbers are used to describe the similarities
between target risks and historical risks and the implementation effects of RRAs, a fuzzy
optimization model is developed below.

max z =
K∑

k=1

n∑
i=1

m∑
j=1

ξijks̃ijkD̂k
j xijk (3)

s.t.
K∑

k=1

n∑
i=1

m∑
j=1

xijkĈk
j ≤ B (4)

K∑
k=1

m∑
j=1

xijk ≤ 1, i = 1, . . . , n (5)

ξijk =
{

0, s̃ijk < σ
1, s̃ijk ≥ σ

(6)

xijk ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , m, k = 1, . . . , K. (7)

In the model, objective function (3) maximizes the estimated effect of implementing
the revised historical RRAs. Equation (4) is the budget constraint. Constraint (5) ensures
that no more than one RRA will be used to mitigate each target risk. Equation (6) means
the screening process. Constraint (7) is a binary mode indicator. The fuzzy optimization
model can be transformed into a single-objective crisp linear programming model according
to the study of Zimmermann (1978). The transformed crisp model can be solved by LP
solvers and the optimal RRAs can be obtained.
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3 Case study

In order to demonstrate the feasibility of applying the proposed model in actual projects,
a metro construction project S in city D is presented. According to the proposed method-
ology, alternative RRAs are retrieved and an optimal set of RRAs can be obtained. From
results, it can be seen that the higher effects of project risk response can be achieved
when more budget is allocated. In addition, in order to achieve better effects of project
risk response, the value of the threshold needs to be set lower. However, the more RRA
alternatives result from lower threshold will incur additional costs of manpower and other
financial resources in the adaptation process. Since the total budget for project risk response
is fixed, the budget allocated for implementing RRAs would reduce due to the increased
adaptation cost and then the total effect of project risk response may decrease. Therefore,
to achieve the maximized risk response effect within the limited budget, the reasonable
thresholds should be set and the tradeoffs between the budget for RRA implementation
and for historical RRA adaptation should be considered.

4 Conclusions

In this paper, a method integrates the case-based method and the optimization method
is proposed for decision support in project risk response. Compared with the existing RRA
selection methods, the advantages and contributions of the proposed method are three
facets. First, the proper RRA alternatives with better effects can be developed by using
the case-based method. Second, the optimal set of RRAs can be obtained easily by the
optimization model. Third, the fuzzy set theory is applied to evaluate the risk probability,
risk impact and the similarity between risks in the RRA selection process. The advantage
of using the fuzzy set theory is that the PMs and experts can make the evaluations with
linguistic terms, which is more suitable for human perception in actual situations. The
proposed method can be applied to many projects with some information of historical
projects for reference.

Some managerial suggestion and implication can also be drawn. First, in order to pro-
vide better decision support for PMs, organizations should always capture a long-term
perspective with an awareness of keeping documents of all handled historical projects. The
integration of knowledge management and the PRM process to some extent would pro-
vide better help for PMs. Second, the relatively lower thresholds may incur considerably
higher adaptation costs with respect to the retrieved RRAs. Thus, the budget for RRA
implementation may be insufficient and the effect of project risk response may decrease.
However, if the thresholds are higher, few or even no RRA alternatives will be screened out.
Therefore, to achieve the maximized response effect within limited budget, PMs should set
reasonable thresholds with discretion and consider the tradeoffs between the budget for
RRA implementation and for historical RRA adaptation.
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1 Introdution

Tabu Searh (TS) is a popular loal searh that works as follows. In eah iteration,

a neighbor solution s′ is generated from the urrent solution s by modifying s aording

to a prede�ned rule. Suh a modi�ation is alled a move. In order esape from a loal

optimum, when a move is performed, its reverse is forbidden (it is said to be tabu) during

tab (parameter) iterations. TS generally performs the best non-tabu move in eah iteration,

and it is usually stopped when a time limit is reahed. The reader is referred to (Gendreau

and Potvin 2010) for more information on TS and other well-known metaheuristis.

In this paper, Multi-Level Tabu Searh (MLTS) is formulated (see Setion 2) in the

ontext where various resoures an be used, for instane in prodution sheduling (see

Setion 3 relying on (Hertz et. al. 2009)) or in transportation (see Setion 4 relying on

(Zu�erey et. al. 2016)). A level is de�ned here as a set of available resoures. The main

idea of MLTS onsists in performing suessive appliations of TS for di�erent levels. As

TS is usually time-onsuming, a hallenge would be to identify the most promising levels

to investigate, as pointed out in the onlusion (see Setion 5).

The suess of two existing solution methods are disussed in Setions 3 and 4, whih

an however be onsidered as belonging to the MLTS methodology. The reader is referred

to the two previous referenes for having more information on the literature review, the

tehnial details of the problems, the experiments and the numerial results (whih are

state-of-the art). For these reasons, simpli�ations and shortuts are proposed in Setions

3 and 4 in order to better fous on (1) the main harateristis of the problems, and (2)

the relevane of the MLTS methodology for suh types of problems. A uni�ed terminology

is employed in order to �t with the proposed MLTS framework.

2 Multi-Level Tabu Searh (MLTS)

Let f be the objetive funtion to minimize (e.g., a ost funtion), k be the number of

available resoure types (e.g., mahines, vehiles), and J be the set of jobs to perform with

the seleted resoures. The goal onsists in performing all the jobs while minimizing f (if

a job is not performed, a rejetion ost has to be minimized). A solution spae or level S
is denoted as S = (r1, r2, . . . , rk), where ri is the number of available resoures of type i.
MLTS is formulated in Algorithm 1, whih returns the best enountered solution s⋆. It �rst
requires an initial level S and an initial solution s ∈ S. Suh a solution is then improved

with TS (i.e., TS tries to use the available resoures as well as possible aording to f). At
the end of the main loop, the level is updated (i.e., the available resoures are modi�ed),

and the proess is restarted with a new solution spae as long as a stopping ondition

is not met. The two main steps are resoure utilization (RU) and resoure modi�ation

(RM). On the one hand, any solution method an be employed for RU, but TS is proposed

here as it usually �nds a good ompromise between various riteria (e.g., quality, speed,

robustness). A lassi neighborhood struture for TS is the reinsertion move (i.e., perform

a job j earlier/later with the same resoure type, or perform j with a di�erent resoure

type). On the other hand, various strategies an be investigated for RM, ranging from
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a basi resoure augmentation/redution (e.g., inrease/derease a single ri by one unit)

to more re�ned variations (e.g., perform signi�ant but strutured modi�ations as in

variable neighborhood searh or large neighborhood searh (Gendreau and Potvin 2010)).

The stopping ondition of MLTS an be simply a time limit. For some ases, it an be a

guarantee that all the promising levels have been explored, whih is likely to be possible if

k is small and f varies in a onvex fashion aording to the modi�ations of S.

Algorithm 1 Multi-Level Tabu Searh (MLTS)

Initialization

1. generate an initial level S;

2. set f(s⋆) = +∞;

While a stopping ondition is not met, do:

1. generate a solution s in level S;

2. resoure utilization (RU): improve s with TS (within S);

3. update the best enountered solution: if f(s) < f(s⋆), set s⋆ = s;

4. resoure modi�ation (RM): modify the solution spae S (e.g., augment or redue it);

Return s⋆

3 MLTS in prodution sheduling

A set J of jobs have to be performed in a plant within a planning horizon H (typially

several days). The sum of the below-presented osts has to be minimized. M(r) is the set
of mahines of type r that are available from the very beginning of H . fs(r) is the storage
ost (per time slot) of a mahine of type r in the plant. At any time slot t ∈ H , a new

mahine of any type r an be purhased at a ost of fp(r). But for eah type r, there is a
limit on the number of mahines that an be bought. Observe that the later is t, the lower
will be the assoiated storage ost of the new mahine.

The following information is assoiated with eah job j: a strit time window [ej , dj ], a
proessing time pj = dj − ej, the required type of mahine mj, the number nj of required

mahines, and the rejetion ost fr(j) that is enountered if job j is not performed with the

available resoure level S. The rejetion ost depends on pj and on mj . A typial job j an
thus be: produe two bathes (i.e., nj = 2) from 1 pm to 8 pm (i.e., pj = 7 hours, ej = 1

pm, dj = 8 pm) on mahine type mj = 2. Substitution is possible. In other words, if a job j
requires mahine type r, it an also be proessed with mahine type r′ if r′ overs r (i.e., r′

is able to perform any job assigned to r). This is denoted as r′ → r. If a mahine of type r is
alloated to a job j, two types of osts are enountered: the �xed alloation ost ffix

a (r), and
the variable alloation ost fvar

a (r), whih is time-dependent. Unsurprisingly, substitution

is not advantageous. Formally, if r′ → r, then ffix
a (r′) > ffix

a (r) and fvar
a (r′) > fvar

a (r).
Maintenane onstraints have also to be satis�ed. In this ontext, Mu(r) is the max-

imum time of use of a mahine of type r without maintenane, Md(r) is the assoiated

maintenane duration, Mw(r) is the assoiated number of requested workers to do it, and

Mc is the apaity of the maintenane workshop (i.e., the number of available workers,

whih orresponds to the number of maintenanes that an be performed onurrently).

Anytime a maintenane is performed on a mahine of type r, a maintenane ost fm(r) is
enountered.

For eah job j, the following deisions are possible, from the best to the worst: (1)

perform j with the requested mahine type r (regular alloation osts ffix
a (r) and fvar

a (r));
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(2) perform j with a mahine of type r′ → r (larger alloation osts); (3) buy a new mahine

of type r (at time t) and perform j with this new mahine (regular alloation osts, but

additional purhasing and storage osts); (4) rejet job j (rejetion ost fr(j)). From a

global perspetive, it is however better to rejet a few jobs and use substitution if one an

avoid purhasing a new mahine.

The solution spae S is de�ned here as the set of mahines available in the stok

(inluding the possibly purhased mahines with their assoiated purhasing times). RM

simply onsists in purhasing a mahine of type r (espeially if the rejetion osts were

strongly impated by mahine type r), or by removing a previously bought mahine of

type r (espeially if RU is �nally able to �nd a solution that does not employ too muh

one mahine of type r). RU relies on TS with the following main neighborhood struture.

A move (j, u) onsists in inserting a rejeted job j (whih needs mahine type r) in the

shedule of mahine u (of type r or of type r′ → r). The jobs of any type in on�it

(beause of time-window or maintenane onstraints) with job j are either resheduled

in an allowed mahine (whih might modify the alloation and maintenane osts) or

rejeted. The maintenanes are greedily resheduled when testing any move, and non-

feasible solutions (beause of the maintenane onstraints) are disarded. If move (j, u) is
performed, it is then tabu to remove job j from mahine u for some iterations.

4 MLTS in vehile routing

Consider an urban network (typially with distanes below 30 km between eah pair of

loations) with n (typially 20) lient loations and a entral depot. Eah lient represents

a medial faility (e.g., the o�e of a dotor, a hospital) and the depot represents the

laboratory LAB that is in harge of analyzing blood samples. The planning horizon H is

a day (typially from 8 am to 6 pm) and the �eet of available vehiles is initially loated

at LAB. Dynami travel times are onsidered (i.e., the atual travel time between two

loations has to be simulated by perturbing the expeted travel time). Two types of job

exists (and an involve the same lient loation several times during H): (A) move a blood

sample j from a lient to LAB (where j has to be analyzed); (B) move a medial equipment

j from LAB to a lient (where j has to be used the next day). For type (A), in order to

keep the hemial properties of eah blood sample j, a time window [ej , dj ] is assoiated,
where ej is the time at whih j beomes available, and dj is the latest time at whih

j should be delivered to LAB. If dj is exeeded, the blood sample is lost as its hemial

properties are not preserved. Suh a situation is totally forbidden by LAB. For type (B), the

time window is simply the full planning horizon H (meaning that the delivery of medial

equipment an be performed anytime during the day). Capaity onstraints have to be

satis�ed. Eah j of type (A) has a volume of qj ∈ [1, 10] liters, whereas qj ∈ [10, 60] liters
for eah j of type (B). Two types of vehiles are available, namely sooters (apaity of 60

liters, speed of 18.7 km/h) and ars (apaity of 900 liters, speed of 17 km/h). The daily

average demand is haraterized by the following features: 300 stati (i.e., known before

H) blood requests, 200 dynami (i.e., revealed during H with the use of simulation) blood

requests, and 25 stati equipment request. Three objetive funtions have to be minimized

in a lexiographi order (i.e., a higher-level objetive is in�nitely more important than a

lower-level objetive): (f1) rejetion osts (orresponding to the use of an external taxi

servie to pik up a blood sample j that annot be olleted on time by the LAB �eet, or if

the apaity onstraint does not allow to perform j); (f2) ar osts (orresponding to the

number of used ars); (f3) travel osts of all the vehiles of the �eet (whih is proportional

to fuel onsumption).

The solution spae S is de�ned here as the �eet of vehiles (i.e., set of ars plus set of

sooters), but LAB gives upper bounds on the number of vehiles of eah type that an be
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used (i.e., it is not always possible for f1 to reah 0). RM simply onsists in adding a vehile

(espeially if f1 has to be signi�antly dereased), or in removing a vehile (espeially if

f2 an be redued without augmenting f1). An initial solution has to be generated before

H with all the stati requests. For this purpose, two proedures are used, namely GR

(a greedy heuristi) and DLS (a desent loal searh based on the well-known CROSS

exhanges (Taillard et. al. 1997)). In eah step of GR, the next job to insert at best is

the one that minimizes the augmentation of f2. If there are several equivalent options, the
goal is then to minimize the augmentation of f3. Again, if there are still more than one

option, the objetive is �nally to balane the load of the various involved vehiles. Indeed,

if a vehile is too muh loaded, its availability to serve a new job beomes poor, whih has

to be avoided espeially if the vehile is in the viinity of a newly revealed job. If a job

annot be inserted in the shedule without violating the deadline onstraint or the apaity

onstraint, a taxi is alled and f1 is augmented aordingly. A move in RU simply onsists

in inserting a job (that dynamially appears during the day) in the urrent solution s as

explained above (i.e., use GR for the insertion and DLS for the improvement).

5 Conlusions and future work

In this work, MLTS (for Multi-Level Tabu Searh) is formulated. It is spei�ally dedi-

ated for situations where variable resoures are available (any �xed set of resoures being

alled a level), and it is well adapted either if various objetive funtions have to be on-

sidered jointly (with or without lexiographi optimization). Under the light of MLTS and

with a uni�ed view, the suess of two existing solutions methods is presented (one for pro-

dution, one for transportation). Note that other appliations an be seen as adaptations

of the MLTS framework (e.g., (Amrani et. al. 2011, Shindl and Zu�erey 2015)). Among

the future works, one ould imagine �ltering tehniques and loal searh proedures for

moving from one promising level to another. This would be partiularly relevant for sit-

uations where an e�ient level is di�ult to �nd and a small omputation-time limit is

imposed.
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1 Motivation

We have been studying the production processes of an axle-manufacturer. Their main
products are heavy-duty truck axles for various trucks, buses and other vehicles. The
equipment required to manufacture these products is very expensive. Therefore, in order
to increase sales on the short term, optimization of the production process is required.
For more substantial, long-term growth, investment in more equipment is necessary. The
presented methods can also be used to estimate the impact of the investment on efficiency.

The production starts with steel rods of different sizes, made by external suppliers. The
process consists of 4 main stages: forging, heat treatment, preparation, and machining.

In the forging stage, the steel rod is heated up, placed into a forging die and a hammering
machine forms it into the desired shape. After some cooling and grinding, it goes through
a heat treatment furnace.

In preparation phase, a hydraulic press gives the product its final geometry. After several
surface inspection and treatment steps, then painting, the product is ready for machining
and packaging.

Forging and heat treatment are the most critical stages of the process, as later stages
have higher flow-rates and they are also less expensive to upgrade. Therefore, we aim to
optimize the manufacturing process by scheduling the forging and heat treatment jobs for
a more efficient operation.

2 Scheduling problem

Forging is the first step of the process. The intermediates need to cool down after
that. Before heat treatment, the intermediates can be stored indefinitely but with incurred
storage costs. A grinding step is also necessary sometime during this storage period. It is
assumed that the resources required for grinding are always available. This way, we can
simplify the scheduling problem by introducing a minimum storage time between forging
and heat treatment, that is enough for cooling and grinding.

A similar simplification is made for the stages after heat treatment. These steps are
assumed to have a constant flow-rate with no equipment constraints.

The forge produces different intermediate products which require different resources.
Product orders are given as input with product type, quantity and due date information.
These product demands must be fulfilled without delays.

Some input materials of the process may not be available at the start but their release
dates are given a priori.

The goal is to find a resource-feasible schedule which fulfils product demands on time,
and minimizes production and storage costs.

The following subsections describe the scheduling aspects of the production steps.
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2.1 Die forging

The forge operates on one steel rod at a time. Different products require different sized
rods, and different forging dies. Each die has a production capacity, given in number of
uses. After this many uses, the die cannot be used until it is restored. Restoration is a long
and expensive process which fully restores the production capacity of the die.

Switching dies is an expensive and time-consuming operation which also decreases the
remaining capacity of the die. Moreover, when forging starts on a die (due to necessary
calibrations), the first batches will result in waste.

2.2 Heat treatment

The heat treatment furnace is operated in cycles. It is active for a certain time, then
shut down for maintenance. The length of these cycles is a few weeks.

The intermediates enter the furnace in batches of a given maximum size and leave it
after a given time. The processing time and costs are independent from the batch size.

3 Literature

Gascon and Leachman (1988) proposed a dynamic programming approach for mini-
mizing changeover and inventory holding costs with deterministic demands. The authors
studied a process with unit sized batches and equal processing times. These assumptions
do not hold for the forge scheduling problem, so despite the similar objective function,
their algorithm is not applicable to our problem.

Many different methods have been presented in the literature for scheduling manufac-
turing processes. Méndez and Cerdá (2006) made a comprehensive review of Mixed-Integer
Linear Programming (MILP) approaches. They compared the advantages and disadvan-
tages of various time and event representation models.

There are various publications addressing the deterioration of resources (Tang and Liu
2009, Zhao and Tang 2010) in the sense that processing times increase as time progresses.
Zhao and Tang (2010) presented an approach which takes into account restoration jobs
to revert the deterioration. However, in our problem, the resources, namely the dies, de-
teriorate through changeovers and usages, not as a function of time, and their production
capacity decreases, not their flow rate.

4 Modeling

We decided to use a MILP model with a discrete uniform time grid. This time repre-
sentation has some modelling advantages to continuous time models, when dealing with
constraints similar to our problem. One of the modeling difficulties is that we do not know
in advance, how many times a die will be changed before its restoration, and in what ra-
tio its capacity will be subdivided. This would make it harder to determine the number
of required time points in a continuous time formulation. Inventory costs, and resource
demands, arrivals are also harder to model in continuous time models, leading to more
complex constraints and worse LP-relaxation.

The forge is modeled with 2 binary variables for each pair of time point and die type,
the first is active during the setup phase of the die, and the second when forging is active,
i.e. intermediates are being created. (1) shows the constraint for ensuring that at most 1
die can be in use at a time.
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∑
d∈Dies

(forges
t,d + forgea

t,d) ≤ 1, t = 1, . . . , T (1)

The required setup time is enforced by (2): forging can only be active if either it was
active in the previous time point, or it was set up in the previous number of time points
equal to the setup time given in time periods.

forgea
t,d · setup ≤ forgea

t−1,d · setup +
t−1∑

t′=max(1,t−setup)

forges
t′,d, t = 2, . . . , T, ∀d ∈ Dies

(2)

Heat treatment is modeled by a continuous variable, which represents the quantity
under treatment from each axle type during a time period. The total quantity in a time
period cannot exceed the capacity of the furnace, this constraint is shown in (3). The
furnace capacity is not constant over time, hence it is subscripted by the time point. In
the case study, it was a periodic availability but the model allows more complex discrete
functions.

∑
a∈Axles

heatt,a ≤ furnacet, t = 1, . . . , T (3)

The minimum waiting time necessary for cooling and grinding between forging and
heat treatment is ensured by constraint (4). It only allows heat treatment of intermediates
that were forged at least as long ago as the required waiting time given in number of time
periods.

heatt,a ≤ rest−cooling,a, t = cooling + 1, . . . , T, ∀a ∈ Axles (4)

Input and output materials, equipment, and capacity levels of forging dies are mod-
elled as resources in a Resource Task Network (RTN). The RTN formulation was proposed
by Pantelides (1994), and it is a general representation of material flows and production
equipment. Treating die capacities as continuous resources allows handling the special de-
terioration constraints associated with die forging. Changing a die decreases the capacity,
not only production usage. Die restoration produces the resource representing die capac-
ity. RTN formulation can also deal with multiple resource types (steel rods, die capacity,
hammering machine) used by the same process.

Resource levels are calculated in every time point (rest), and used to compute storage
costs and enforce meeting product demands. The starting levels (t = 1) are given as
input, the later levels are computed from the previous time point and the resource usage /
production of the last period. This is shown in equation (5). Note that demand is adjusted
by the fixed time requirement of the finishing stages following heat treatment.

rest+1,r = rest,r + inputt+1,r

−demandt+1,r − heatt,r + heatt,product(r)
−

∑
d∈Dies forgea

t,d · usaged,r −
∑

d∈Dies forges
t,d · usages

d,r

t = 1, . . . , T, ∀r ∈ R (5)
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Die capacities must be handled separately, as restoration increases it to the maximum
capacity, regardless of its current level. Therefore, the resource balance for die capacities
is split into a lower and upper bound inequality, shown in (6) and (7). The res variable is
bounded from the top by the maximum die capacity. Deterioration is included in usages,
which is subtracted during the setup phase.

rest+1,d ≥ rest,d −
∑

d∈Dies

forgea
t,d · usaged,d

−
∑

d∈Dies

forges
t,d · usages

d,d

t = 1, . . . , T, ∀d ∈ Dies (6)

rest+1,d ≤ rest,d −
∑

d∈Dies

forgea
t,d · usaged,d

−
∑

d∈Dies

forges
t,d · usages

d,d

+restoredt+1,d · maxCapd

t = 1, . . . , T, ∀d ∈ Dies (7)

The binary variable, restored is set to 1 in the last time period of the restoration.
Restoration time is enforced in a similar manner as the setup time shown in (2). Solution
time is improved if another lower bound (8) for res is added, which ensures that the die is
fully restored.

rest,d ≥ restoredt,d · maxCapd, t = 1, . . . , T, ∀d ∈ Dies (8)

The objective function to be minimized is the sum of different costs calculated from
the variables introduced above. Costs include setup costs, storage costs and die restoration
costs.

5 Computational results

The model was tested on 2 problem instances. The problems were solved on a computer
with 4 CPU cores (Intel i7-6700HQ, 2.60GHz) and 8 GB RAM, using Gurobi 7.5.2. The
length of time periods was set to 8 hours in each instance, to correspond with the work
shifts.

In the first instance, 22 products were considered over a time horizon of 4 months. The
solver could not obtain a proven optimal solution in the time limit of 1000 s but provided
feasible schedules with under 5% MIP gap.

The second instance focused on the 16 products that had the highest demand, and the
planning horizon was lowered to 1 month. An optimal solution was found in 646 s.

6 Conclusion

We modeled the forging process of an axle-manufacturing factory. The special con-
straints of deteriorating forging dies were modeled. These constraints originate from a real
industrial environment. To the extent of our knowledge, this scheduling problem has not
been studied in optimization research, prior to this work.

The presented model can be used to find the optimal schedule for a real-life, industrial
problem. For long-term planning, finding the optimal solution may require unacceptably
long time but good near-optimal solutions can be obtained in under an hour.

279



7 Acknowledgements

Supported by the ÚNKP-17-3 New National Excellence Program of the Ministry of
Human Capacities.

References

Gascon A., R. C. Leachman, 1988, “A Dynamic Programming Solution to the Dynamic, Multi-
Item, Single-Machine Scheduling Problem”, Operations Research, Vol. 36(1), pp. 50–56.

Méndez C., Cerdá J., 2006, “State-of-the-art review of optimization methods for short-term
scheduling of batch processes”, Computers & Chemical Engineering, Vol. 30(6-7), pp. 913–946.

Pantelides C. C., 1994, “Unified frameworks for optimal process planning and scheduling”, Pro-
ceedings on the second conference on foundations of computer aided operations, Cache Publi-
cations, New York, pp. 253–274.

Tang L., P. Liu, 2009, “Flowshop scheduling problems with transportation or deterioration between
the batching and single machines”, Computers & Industrial Engineering, Vol. 56(4), pp. 1289–
1295.

Zhao C., H. Tang, 2010, “Single machine scheduling with general job-dependent aging effect and
maintenance activities to minimize makespan”, Applied Mathematical Modelling, Vol. 34(3),
pp. 837–841.

280


	Copertina_plus.pdf
	Copertina.pdf
	blank_page.pdf

	Frontmatter.pdf
	ISBN.pdf
	preface.pdf
	preface_back.pdf
	pc.pdf
	pc_back.pdf
	toc.pdf
	toc_back.pdf
	author_index.pdf
	keyword_index.pdf
	keyword_index_back.pdf

	Proceedings2di2.pdf
	Binder1_01_05.pdf
	01_paper_65.pdf
	02_paper_64.pdf
	03_paper_70.pdf
	04_paper_29.pdf
	05_paper_37.pdf

	Binder1_06_10.pdf
	06_paper_59.pdf
	07_paper_47.pdf
	08_paper_46.pdf
	09_paper_49.pdf
	10_paper_22.pdf

	Binder1_11_15.pdf
	11_paper_71.pdf
	12_paper_43.pdf
	13_paper_8.pdf
	14_paper_52.pdf
	15_paper_14.pdf

	Binder1_16_20.pdf
	16_paper_12.pdf
	17_paper_1.pdf
	Synchronous flow shop scheduling with pliable jobs
	Matthias Bultmann, Sigrid Knust , Stefan Waldherr 

	18_paper_28.pdf
	19_invited_paper_3.pdf
	20_paper_7.pdf

	Binder1_21_25.pdf
	21_paper_45.pdf
	22_paper_54.pdf
	23_paper_74.pdf
	24_paper_56.pdf
	25_paper_24.pdf
	A new set of benchmark instances for the Multi-Mode Resource Investment Problem
	 Patrick Gerhards


	Binder1_26_30.pdf
	26_paper_41.pdf
	27_paper_33.pdf
	28_paper_13.pdf
	29_paper_61.pdf
	30_paper_39.pdf

	Binder1_31_35.pdf
	31_paper_36.pdf
	Scheduling Multiple Flexible Projects with Different Variants of Genetic Algorithms
	Luise-Sophie Hoffmann and Carolin Kellenbrink

	32_paper_55.pdf
	33_paper_30.pdf
	34_paper_32.pdf
	35_paper_31.pdf

	Binder1_36_40.pdf
	36_paper_66.pdf
	37_paper_35.pdf
	38_paper_11.pdf
	39_paper_10.pdf
	40_paper_40.pdf

	Binder1_41_45.pdf
	41_paper_27.pdf
	42_invited_paper_2.pdf
	43_paper_18.pdf
	44_paper_58.pdf
	45_paper_73.pdf

	Binder1_46_50.pdf
	46_paper_76.pdf
	47_invited_paper_1.pdf
	48_paper_42.pdf
	49_paper_53.pdf
	50_paper_21.pdf

	Binder1_51_67.pdf
	51_paper_25.pdf
	On the complexity of scheduling start time dependent asymmetric convex processing times
	Helmut A. Sedding

	52_paper_19.pdf
	53_paper_23.pdf
	54_paper_44.pdf
	55_paper_15.pdf
	56_paper_9.pdf
	57_paper_34.pdf
	Order Acceptance and Scheduling Problem with Batch Delivery
	 Istenç Tarhan and Ceyda Oguz

	58_paper_72.pdf
	59_paper_69.pdf
	60_paper_17.pdf
	61_paper_4.pdf
	62_paper_16.pdf
	63_paper_5.pdf
	64_paper_62.pdf
	65_paper_6.pdf
	66_paper_3.pdf
	Multi-Level Tabu Search for Job Scheduling in a Variable-Resource Environment
	Nicolas Zufferey

	67_paper_38.pdf



